You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\p$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and JarnÃk concerning $W(\psi)$ fall into our general framework. The main res...
Given a compact metric space $(\Omega,d)$ equipped with a non-atomic, probability measure $m$ and a positive decreasing function $\psi$, we consider a natural class of lim sup subsets $\Lambda(\psi)$ of $\Omega$. The classical lim sup set $W(\psi)$ of `$\psi$-approximable' numbers in the theory of metric Diophantine approximation fall within this class. We establish sufficient conditions (which are also necessary under some natural assumptions) for the $m$-measure of $\Lambda(\psi)$ to be either positive or full in $\Omega$ and for the Hausdorff $f$-measure to be infinite. The classical theorems of Khintchine-Groshev and Jarnik concerning $W(\psi)$ fall into our general framework. The main r...
This book is concerned with Diophantine approximation on smooth manifolds embedded in Euclidean space, and its aim is to develop a coherent body of theory comparable with that which already exists for classical Diophantine approximation. In particular, this book deals with Khintchine-type theorems and with the Hausdorff dimension of the associated null sets. All researchers with an interest in Diophantine approximation will welcome this book.
KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to ``physical systems'' for ``observable'' values of the perturbation parameters. The authors consider the Restricted, Circular, Planar, Three-Body Problem (RCP3BP), i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the m...
In order to inject dissipation as to force local exponential stabilization of the steady-state solutions, an Optimal Control Problem (OCP) with a quadratic cost functional over an infinite time-horizon is introduced for the linearized N-S equations. As a result, the same Riccati-based, optimal boundary feedback controller which is obtained in the linearized OCP is then selected and implemented also on the full N-S system. For $d=3$, the OCP falls definitely outside the boundaries of established optimal control theory for parabolic systems with boundary controls, in that the combined index of unboundedness--between the unboundedness of the boundary control operator and the unboundedness of th...
The theory of one-sided $M$-ideals and multipliers of operator spaces is simultaneously a generalization of classical $M$-ideals, ideals in operator algebras, and aspects of the theory of Hilbert $C*$-modules and their maps. Here we give a systematic exposition of this theory. The main part of this memoir consists of a 'calculus' for one-sided $M$-ideals and multipliers, i.e. a collection of the properties of one-sided $M$-ideals and multipliers with respect to the basic constructions met in functional analysis. This is intended to be a reference tool for 'noncommutative functional analysts' who may encounter a one-sided $M$-ideal or multiplier in their work.
Contents: A tree structure for the unit ball $mathbb B? n$ in $mathbb C'n$; Carleson measures; Pointwise multipliers; Interpolating sequences; An almost invariant holomorphic derivative; Besov spaces on trees; Holomorphic Besov spaces on Bergman trees; Completing the multiplier interpolation loop; Appendix; Bibliography
One of the aims of this work is to investigate some natural properties of Borel sets which are undecidable in $ZFC$. The authors' starting point is the following elementary, though non-trivial result: Consider $X \subset 2omega\times2omega$, set $Y=\pi(X)$, where $\pi$ denotes the canonical projection of $2omega\times2omega$ onto the first factor, and suppose that $(\star)$: Any compact subset of $Y$ is the projection of some compact subset of $X$. If moreover $X$ is $\mathbf{\Pi 0 2$ then $(\star\star)$: The restriction of $\pi$ to some relatively closed subset of $X$ is perfect onto $Y$ it follows that in the present case $Y$ is also $\mathbf{\Pi 0 2$. Notice that the reverse implication $...
Let $G$ be a compact, simply connected, simple Lie group. By applying the notion of a twisted tensor product in the senses of Brown as well as of Hess, we construct an economical injective resolution to compute, as an algebra, the cotorsion product which is the $E_2$-term of the cobar type Eilenberg-Moore spectral sequence converging to the cohomology of classifying space of the loop group $LG$. As an application, the cohomology $H^*(BLSpin(10); \mathbb{Z}/2)$ is explicitly determined as an $H^*(BSpin(10); \mathbb{Z}/2)$-module by using effectively the cobar type spectral sequence and the Hochschild spectral sequence, and further, by analyzing the TV-model for $BSpin(10)$.
The maps from loop suspensions to loop spaces are investigated using group representations in this article. The shuffle relations on the Cohen groups are given. By using these relations, a universal ring for functorial self maps of double loop spaces of double suspensions is given. Moreover the obstructions to the classical exponent problem in homotopy theory are displayed in the extension groups of the dual of the important symmetric group modules Lie$(n)$, as well as in the top cohomology of the Artin braid groups with coefficients in the top homology of the Artin pure braid groups.