You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A comprehensive state-of-the-art collection of the most frequently used techniques for plant cell and tissue culture. Readily reproducible and extensively annotated, the methods range from general methodologies, such as culture induction, growth and viability evaluation, and contamination control, to such highly specialized techniques as chloroplast transformation involving the laborious process of protoplast isolation and culture. Most of the protocols are currently used in the research programs of the authors or represent important parts of business projects aimed at the generation of improved plant materials. Two new appendices explain the principles for formulating culture media and the composition of the eight most commonly used media formulations, and list more than 100 very useful internet sites.
Recent advances in the biosciences have led to a range of powerful new technologies, particularly nucleic acid, protein and cell-based methodologies. The most recent insights have come to affect how scientists investigate and define cellular processes at the molecular level. This book expands upon the techniques included in the first edition, providing theory, outlines of practical procedures, and applications for a range of techniques. Written by a well-established panel of research scientists, the book provides an up-to-date collection of methods used regularly in the authors’ own research programs.
In this second edition of a widely used classic laboratory manual, leading experts utilize the tremendous progress and technological advances that have occurred to create a completely new collection of not only the major basic techniques, but also advanced protocols for yeast research and for using yeast as a host to study genes from other organisms. The authors provide detailed methods for the isolation of subcellular components-including organelles and macromolecules, for the basic cellular and molecular analysis specific for yeast cells, and for the creation of conditional mutant phenotypes that lend themselves to powerful genome manipulation. Additional protocols offer advanced approaches to study genetic interactions, DNA and chromatin metabolism, gene expression, as well as the foreign genes and gene products in yeast cells.
Research leaders in the PDE field describe new concepts and techniques for investigating the role of PDEs in orchestrating normal and pathophysiological responses. Presented in step-by-step detail, these readily reproducible methods allow the measurement of cyclic nucleotide variations in living cells, as well as their visualization in a spatio-temporal manner, the localization and characterization of their activities in tissues and living cells, and the assessment of targeted PDEs in creating specific tools and drugs.
In the first edition of Calcium Signaling Protocols I began by writing “The regula- 2+ tion of intracellular Ca is a common theme presented in many papers over the last 20 2+ or so years and the description of the Ca -sensitive indicator dye fura-2 in 1985 resulted in a massive increase in these types of studies. ” This statement is as true in 2005 as it was in 1999, but 20 or so years is now 30 years! There has been some reorganization of the volume such that there are now 22 ch- ters including five new ones, all written by experts in their field. These new chapters 2+ include use of the FlexStation and electrophysiological measurement of Ca channel activity. The book is broken into six...
A collection of readily reproducible methods for the design, preparation, and use of RNAs for silencing gene expression in cells and organisms. The techniques range widely and include methods addressing the biochemical aspects of the silencing machinery, RNA silencing in non-mammalian organisms, and the in vivo delivery of siRNAs and silencing vectors. There are also techniques for designing, preparing, and using RNAs to silence gene expression, for fine-tuning regulation by targeting specific isoforms of a given gene, and for the study and use of microRNAs. The protocols follow the successful Methods in Molecular BiologyTM series format, each offering step-by-step laboratory instructions, an introduction outlining the principle behind the technique, lists of the necessary equipment and reagents, and tips on troubleshooting and avoiding known pitfalls.
Chemical genomics is an exciting new field that aims to transform biolo- cal chemistry into a high-throughput industrialized process, much in the same way that molecular biology has been transformed by genomics. The inter- tion of small organic molecules with biological systems (mostly proteins) underpins drug discovery in the pharmaceutical and biotechnology industries, and therefore a volume of laboratory protocols that covers the key aspects of chemical genomics would be of use to biologists and chemists in these orga- zations. Academic scientists have been exploring the functions of proteins using small molecules as probes for many years and therefore would also b- efit from sharing idea...
The Special Issue “Plant Proteomics 3.0” was conceived in an attempt to address the recent advancements in as well as limitations of current proteomic techniques and their diverse applications to attain new insights into plant molecular responses to various biotic and abiotic stressors and the molecular bases of other processes. Proteomics’ focus is also related to translational purposes, including food traceability and allergen detection. In addition, bioinformatic techniques are needed for more confident identification, quantitation, data analysis and networking, especially with non-model or orphan plants, including medicinal and meditational plants as well as forest tree species. This Special Issue contains 23 articles, including four reviews and 19 original papers.
A cutting-edge collection of readily reproducible techniques for the isolation, culture, and study of activation and signaling in human mast cells. These methods take advantage of the latest advances in molecular biology, technology, and information science. They include methods for the identification of mast cells, the development of mast cells in vitro, the study of mast cell signaling and gene expression, and the measurement of mast cell expression of inflammatory mediators. Additional chapters cover methods for studying mast cell interactions with other cell types (endothelial cells, fibroblasts, and B cells), the roles of mast cells in host defense, and mast cell apoptosis.