Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Differential Forms on Wasserstein Space and Infinite-Dimensional Hamiltonian Systems
  • Language: en
  • Pages: 90

Differential Forms on Wasserstein Space and Infinite-Dimensional Hamiltonian Systems

Let $\mathcal{M}$ denote the space of probability measures on $\mathbb{R}^D$ endowed with the Wasserstein metric. A differential calculus for a certain class of absolutely continuous curves in $\mathcal{M}$ was introduced by Ambrosio, Gigli, and Savare. In this paper the authors develop a calculus for the corresponding class of differential forms on $\mathcal{M}$. In particular they prove an analogue of Green's theorem for 1-forms and show that the corresponding first cohomology group, in the sense of de Rham, vanishes. For $D=2d$ the authors then define a symplectic distribution on $\mathcal{M}$ in terms of this calculus, thus obtaining a rigorous framework for the notion of Hamiltonian systems as introduced by Ambrosio and Gangbo. Throughout the paper the authors emphasize the geometric viewpoint and the role played by certain diffeomorphism groups of $\mathbb{R}^D$.

Degree Theory in Analysis and Applications
  • Language: en
  • Pages: 226

Degree Theory in Analysis and Applications

This text examines degree theory and some of its applications in analysis. Topics described include: degree theory for continuous functions; the multiplication theorem; Hopf's theorem; Brower's fixed point theorem; odd mappings; and Jordan's separation theorem.

Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem
  • Language: en
  • Pages: 81

Differential Equations Methods for the Monge-Kantorovich Mass Transfer Problem

In this volume, the authors demonstrate under some assumptions on $f $, $f $ that a solution to the classical Monge-Kantorovich problem of optimally rearranging the measure $\mu{ }=f dx$ onto $\mu =f dy$ can be constructed by studying the $p$-Laplacian equation $- \roman{div}(\vert DU_p\vert p-2}Du_p)=f -f $ in the limit as $p\rightarrow\infty$. The idea is to show $u_p\rightarrow u$, where $u$ satisfies $\vert Du\vert\leq 1, -\roman{div}(aDu)=f -f $ for some density $a\geq0$, and then to build a flow by solving a nonautonomous ODE involving $a, Du, f $ and $f $

Monge Ampere Equation: Applications to Geometry and Optimization
  • Language: en
  • Pages: 186

Monge Ampere Equation: Applications to Geometry and Optimization

In recent years, the Monge Ampère Equation has received attention for its role in several new areas of applied mathematics: as a new method of discretization for evolution equations of classical mechanics, such as the Euler equation, flow in porous media, Hele-Shaw flow, etc.; as a simple model for optimal transportation and a div-curl decomposition with affine invariance; and as a model for front formation in meteorology and optimal antenna design. These applications were addressed and important theoretical advances presented at a NSF-CBMS conference held at Florida Atlantic University (Boca Raton). L. Cafarelli and other distinguished specialists contributed high-quality research results and up-to-date developments in the field. This is a comprehensive volume outlining current directions in nonlinear analysis and its applications.

On the Shape of a Pure $O$-Sequence
  • Language: en
  • Pages: 93

On the Shape of a Pure $O$-Sequence

A monomial order ideal is a finite collection X of (monic) monomials such that, whenever M∈X and N divides M, then N∈X. Hence X is a poset, where the partial order is given by divisibility. If all, say t t, maximal monomials of X have the same degree, then X is pure (of type t). A pure O-sequence is the vector, h_=(h0=1,h1,...,he), counting the monomials of X in each degree. Equivalently, pure O-sequences can be characterized as the f-vectors of pure multicomplexes, or, in the language of commutative algebra, as the h h-vectors of monomial Artinian level algebras. Pure O-sequences had their origin in one of the early works of Stanley's in this area, and have since played a significant role in at least three different disciplines: the study of simplicial complexes and their f f-vectors, the theory of level algebras, and the theory of matroids. This monograph is intended to be the first systematic study of the theory of pure O-sequences.

Featured Reviews in Mathematical Reviews 1997-1999
  • Language: en
  • Pages: 762

Featured Reviews in Mathematical Reviews 1997-1999

This second volume of Featured Reviews makes available special detailed reviews of some of the most important mathematical articles and books published from 1997 through 1999. Also included are excellent reviews of several classic books and articles published prior to 1970. Among those reviews, for example, are the following: Homological Algebra by Henri Cartan and Samuel Eilenberg, reviewed by G. Hochschild; Faisceaux algebriques coherents by Jean-Pierre Serre, reviewed by C. Chevalley; and On the Theory of General Partial Differential Operators by Lars Hormander, reviewed by J. L. Lions. In particular, those seeking information on current developments outside their own area of expertise will find the volume very useful. By identifying some of the best publications, papers, and books that have had or are expected to have a significant impact in applied and pure mathematics, this volume will serve as a comprehensive guide to important new research across all fields covered by MR.

Implicit Partial Differential Equations
  • Language: en
  • Pages: 278

Implicit Partial Differential Equations

Nonlinear partial differential equations has become one of the main tools of mod ern mathematical analysis; in spite of seemingly contradictory terminology, the subject of nonlinear differential equations finds its origins in the theory of linear differential equations, and a large part of functional analysis derived its inspiration from the study of linear pdes. In recent years, several mathematicians have investigated nonlinear equations, particularly those of the second order, both linear and nonlinear and either in divergence or nondivergence form. Quasilinear and fully nonlinear differential equations are relevant classes of such equations and have been widely examined in the mathematic...

Two Kinds of Derived Categories, Koszul Duality, and Comodule-Contramodule Correspondence
  • Language: en
  • Pages: 146

Two Kinds of Derived Categories, Koszul Duality, and Comodule-Contramodule Correspondence

"July 2011, volume 212, number 996 (first of 4 numbers)."

Infinite-Dimensional Representations of 2-Groups
  • Language: en
  • Pages: 133

Infinite-Dimensional Representations of 2-Groups

Just as groups can have representations on vector spaces, 2-groups have representations on 2-vector spaces, but Lie 2-groups typically have few representations on the finite-dimensional 2-vector spaces introduced by Kapranov and Voevodsky. Therefore, Crane, Sheppeard, and Yetter introduced certain infinite-dimensional 2-vector spaces, called measurable categories, to study infinite-dimensional representations of certain Lie 2-groups, and German and North American mathematicians continue that work here. After introductory matters, they cover representations of 2-groups, and measurable categories, representations on measurable categories. There is no index. Annotation ©2012 Book News, Inc., Portland, OR (booknews.com).

On $L$-Packets for Inner Forms of $SL_n$
  • Language: en
  • Pages: 110

On $L$-Packets for Inner Forms of $SL_n$

The theory of $L$-indistinguishability for inner forms of $SL_2$ has been established in the well-known paper of Labesse and Langlands (L-indistinguishability forSL$(2)$. Canad. J. Math. 31 (1979), no. 4, 726-785). In this memoir, the authors study $L$-indistinguishability for inner forms of $SL_n$ for general $n$. Following the idea of Vogan in (The local Langlands conjecture. Representation theory of groups and algebras, 305-379, Contemp. Math. 145 (1993)), they modify the $S$-group and show that such an $S$-group fits well in the theory of endoscopy for inner forms of $SL_n$.