You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Provides in-depth coverage of the modelling, behaviour, control, and stability analysis of converter-interfaced energy storage systems.
Presents the principles, derivations, and equations of renewable energy power plants, including MATLAB code Advanced Control of Grid-Integrated Renewable Energy Power Plants presents a comprehensive introduction to the power system dynamics and stability of renewable energy power plants (RPPs), such as wind turbines, wind power plants, and photovoltaic systems. The author—a noted expert on the topic—takes a rigorous approach to the analysis and modelling of RPPs, such as turbine rotors, PV cells, electronic converters, transformers, and aggregated grid models. This approach allows for the validation of requirements for sustainable power systems based on formal methods. The text deals wit...
Frequency Variations in Power Systems: Modeling, State Estimation and Control presents the Frequency Divider Formula (FDF); a unique approach that defines, calculates and estimates the frequency in electrical energy systems. This authoritative book is written by two noted researchers on the topic. They define the meaning of frequency of an electrical quantity (such as voltage and current) in non-stationary conditions (for example the frequency is not equal to the nominal one) and pose the foundation of the frequency divider formula. The book describes the consequences of using a variable frequency in power system modelling and simulations, in state estimation and frequency control applicatio...
Converter-Based Dynamics and Control of Modern Power Systems addresses the ongoing changes and challenges in rotating masses of synchronous generators, which are transforming dynamics of the electrical system. These changes make it more important to consider and understand the role of power electronic systems and their characteristics in shaping the subtleties of the grid and this book fills that knowledge gap. Balancing theory, discussion, diagrams, mathematics, and data, this reference provides the information needed to acquire a thorough overview of resilience issues and frequency definition and estimation in modern power systems. This book offers an overview of classical power system dyn...
Solar photovoltaic (PV) systems have experienced a tremendous increase in installed capacity in the past decade. Although solar PV power is environmentally friendly and can be used to extend the life of fossil fuel reserves, it is of an intermittent nature. Through nine chapters, this book provides an understanding of solar PV systems’ power output intermittency and its impacts on power systems. The first part of the book highlights the source of the variability of both solar irradiation and PV systems’ output, while the second highlights the impact of factors such as temperature and dust on PV systems’ output variability through case studies. The third part highlights the impacts of PV systems’ output variability of the design and operation of power systems. This book will appeal to students, researchers, operators, engineers, designers, and policymakers working on solar PV or electric power systems design, planning, or operation.
Allows the reader to deepen their understanding of various technologies for both fixed power supply installations of railway systems and for railway rolling stock This book explores the electric railway systems that play a crucial role in the mitigation of congestion and pollution caused by road traffic. It is divided into two parts: the first covering fixed power supply systems, and the second concerning the systems for railway rolling stock. In particular, after a historical introduction to the framework of technological solutions in current use, the authors investigate electrification systems for the power supply of rail vehicles, trams, and subways. Electrical Railway Transportation Syst...
How will we meet rising energy demands? What are our options? Are there viable long-term solutions for the future? Learn the fundamental physical, chemical and materials science at the heart of renewable/non-renewable energy sources, future transportation systems, energy efficiency and energy storage. Whether you are a student taking an energy course or a newcomer to the field, this textbook will help you understand critical relationships between the environment, energy and sustainability. Leading experts provide comprehensive coverage of each topic, bringing together diverse subject matter by integrating theory with engaging insights. Each chapter includes helpful features to aid understanding, including a historical overview to provide context, suggested further reading and questions for discussion. Every subject is beautifully illustrated and brought to life with full color images and color-coded sections for easy browsing, making this a complete educational package. Fundamentals of Materials for Energy and Environmental Sustainability will enable today's scientists and educate future generations.
This book will be focused on the modeling and control of the DFIM based wind turbines. In the first part of the book, the mathematical description of different basic dynamic models of the DFIM will be carried out. It will be accompanied by a detailed steady-state analysis of the machine. After that, a more sophisticated model of the machine that considers grid disturbances, such as voltage dips and unbalances will be also studied. The second part of the book surveys the most relevant control strategies used for the DFIM when it operates at the wind energy generation application. The control techniques studied, range from standard solutions used by wind turbine manufacturers, to the last developments oriented to improve the behavior of high power wind turbines, as well as control and hardware based solutions to address different faulty scenarios of the grid. In addition, the standalone DFIM generation system will be also analyzed.
This book serves as a tool for any engineer who wants to learn about circuits, electrical machines and drives, power electronics, and power systems basics From time to time, engineers find they need to brush up on certain fundamentals within electrical engineering. This clear and concise book is the ideal learning tool for them to quickly learn the basics or develop an understanding of newer topics. Fundamentals of Electric Power Engineering: From Electromagnetics to Power Systems helps nonelectrical engineers amass power system information quickly by imparting tools and trade tricks for remembering basic concepts and grasping new developments. Created to provide more in-depth knowledge of f...
Everything you wanted to know about industrial gas turbines for electric power generation in one source with hard-to-find, hands-on technical information.