You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book explores connections between control theory and geometric mechanics. The author links control theory with a geometric view of classical mechanics in both its Lagrangian and Hamiltonian formulations, and in particular with the theory of mechanical systems subject to motion constraints. The synthesis is appropriate as there is a rich connection between mechanics and nonlinear control theory. The book provides a unified treatment of nonlinear control theory and constrained mechanical systems that incorporates material not available in other recent texts. The book benefits graduate students and researchers in the area who want to enhance their understanding and enhance their techniques.
This volume presents articles originating from invited talks at an exciting international conference held at The Fields Institute in Toronto celebrating the sixtieth birthday of the renowned mathematician, Vladimir Arnold. Experts from the world over--including several from "Arnold's school"--gave illuminating talks and lively poster sessions. The presentations focused on Arnold's main areas of interest: singularity theory, the theory of curves, symmetry groups, dynamical systems, mechanics, and related areas of mathematics. The book begins with notes of three lectures by V. Arnold given in the framework of the Institute's Distinguished Lecturer program. The topics of the lectures are: (1) From Hilbert's Superposition Problem to Dynamical Systems (2) Symplectization, Complexification, and Mathematical Trinities (3) Topological Problems in Wave Propagation Theory and Topological Economy Principle in Algebraic Geometry. Arnold's three articles include insightful comments on Russian and Western mathematics and science. Complementing the first is Jurgen Moser's "Recollections", concerning some of the history of KAM theory.
This work is aimed at mathematics and engineering graduate students and researchers in the areas of optimization, dynamical systems, control sys tems, signal processing, and linear algebra. The motivation for the results developed here arises from advanced engineering applications and the emer gence of highly parallel computing machines for tackling such applications. The problems solved are those of linear algebra and linear systems the ory, and include such topics as diagonalizing a symmetric matrix, singular value decomposition, balanced realizations, linear programming, sensitivity minimization, and eigenvalue assignment by feedback control. The tools are those, not only of linear algebr...
This monograph provides a complete and up-to-date examination of rigid body dynamics using a Lagrangian approach. All known integrable cases, which were previously scattered throughout the literature, are collected here for convenient reference. Also contained are particular solutions to diverse problems treated within rigid body dynamics. The first seven chapters introduce the elementary dynamics of the rigid body and its main problems. A full historical account of the discovery and development of each of the integrable cases is included as well. Instructors will find this portion of the book well-suited for an undergraduate course, having been formulated by the author in the classroom over...
The chapters in this book present an excellent exposition of recent developments in both robotics and nonlinear control centering around "hyper-redundancy", highly oscillatory inputs, optimal control, exterior differential systems, and the use of generic loops. The principal topics covered in the book are: adaptive control for a class of nonlinear systems, event-based motion planning, nonlinear control synthesis and path planning in robotics with special emphasis on nonholonomic and "hyper-redundant" robotic systems, control design and stabilization of driftless affine control systems (of the type arising in the kinematic control of nonholonomic robotic systems), control design methods for Hamiltonian systems and exterior differential systems. The chapter covering exterior differential systems contains a detailed introduction to the use of exterior differential methods, including the Goursat and extended Goursat normal forms and their application to path planning for nonholonomic systems.
In one of his sermons, the medieval preacher Bernardino of Siena listed seven ’fathers’ to whom one owed obedience: God, one’s natural father, godfather, confessor, benefactor, a government official, and any elderly man. This book seeks to answer the question of why medieval Europeans saw the need for so many ’fathers.’ Why was fatherhood so appealing as a metaphor? Situated at the intersection of social and cultural history, the study draws upon a variety of late-medieval and early-modern sources including witness depositions, personal letters and pedagogical treatises from the city of Basel, Switzerland. It focuses on how people from different walks of life invoked ideas about fa...
This primer on mathematics formalisation provides a rapid, hands-on introduction to proof verification in Lean. After a quick introduction to Lean, the basic techniques of human-readable formalisation are introduced, illustrated by simple examples on maps, induction and real numbers. Subsequently, typical design options are discussed and brought to life through worked examples in the setting of simplicial complexes (a higher-dimensional generalisation of graph theory). Finally, the book demonstrates how current research in algebraic and geometric topology can be formalised by means of suitable abstraction layers. Informed by the author's recent teaching and research experience, this book allows students and researchers to quickly get started with formalising and checking their proofs. The core material of the book is accessible to mathematics students with basic programming skills. For the final chapter, familiarity with elementary category theory and algebraic topology is recommended.
Infinite-dimensional systems is a well established area of research with an ever increasing number of applications. Given this trend, there is a need for an introductory text treating system and control theory for this class of systems in detail. This textbook is suitable for courses focusing on the various aspects of infinite-dimensional state space theory. This book is made accessible for mathematicians and post-graduate engineers with a minimal background in infinite-dimensional system theory. To this end, all the system theoretic concepts introduced throughout the text are illustrated by the same types of examples, namely, diffusion equations, wave and beam equations, delay equations and the new class of platoon-type systems. Other commonly met distributed and delay systems can be found in the exercise sections. Every chapter ends with such a section, containing about 30 exercises testing the theoretical concepts as well. An extensive account of the mathematical background assumed is contained in the appendix.
This book covers a wide range of phenomena in the natural sciences dominated by notions of universality and renormalization. The contributions in this volume are equally broad in their approach to these phenomena, offering the mathematical as well as the perspective of the applied sciences. They explore renormalization theory in quantum field theory and statistical physics, and its connections to modern mathematics as well as physics on scales from the microscopic to the macroscopic. Information for our distributors: Titles in this series are co-published with the Fields Institute for Research in Mathematical Sciences (Toronto, Ontario, Canada).
This book presents a comprehensive treatment of recently developed scalable algorithms for solving multibody contact problems of linear elasticity. The brand-new feature of these algorithms is their theoretically supported numerical scalability (i.e., asymptotically linear complexity) and parallel scalability demonstrated in solving problems discretized by billions of degrees of freedom. The theory covers solving multibody frictionless contact problems, contact problems with possibly orthotropic Tresca’s friction, and transient contact problems. In addition, it also covers BEM discretization, treating jumping coefficients, floating bodies, mortar non-penetration conditions, etc. This secon...