You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Accessible references for researchers and industrialists in this exciting field, covering both developments and applications of catalysis.
These proceedings reflect recent developments in the field of zeolite chemistry and catalysis with an emphasis on the role of a modifying component on the properties of the molecular sieve material. The plenary lectures and contributed papers concentrate on the problem of isomorphous substitution in a zeolitic framework; on the occlusion and the structure of metal, metal oxide, and metal sulphide clusters and complexes in the intracrystalline void volume of molecular sieves and zeolites as well as in the interlaminar space of layered compounds.Catalytic applications are discussed, not only in regard to traditional hydrocarbon transformation, but also in such areas as: reduction of SO2, decomposition of NO, reactions of sulphur containing compounds and conversion of CO, CO2 to hydrocarbons or of alcohols to oxygenated products.Because the book provides valuable data and information on new achievements in the zeolite material science and application, it will be of considerable interest to all research groups involved in zeolite science.
Helps researchers develop new catalysts for sustainable fueland chemical production Reviewing the latest developments in the field, this bookexplores the in-situ characterization of heterogeneous catalysts,enabling readers to take full advantage of the sophisticatedtechniques used to study heterogeneous catalysts and reactionmechanisms. In using these techniques, readers can learn to improvethe selectivity and the performance of catalysts and how to preparecatalysts as efficiently as possible, with minimum waste. In-situ Characterization of Heterogeneous Catalysts featurescontributions from leading experts in the field of catalysis. Itbegins with an introduction to the fundamentals and thenc...
The present book focuses on advancement in the application of heterogeneous catalytic materials for the dehydrogenative synthesis of valuable organic compounds from substrates such as alcohols and simple aliphatic compounds. Several heterogeneous transition metals-based catalytic materials are explored for the synthesis of valuable chemicals for industrial applications. The book provides insight into the application of state-of-the-art technology for energy utilization and clean chemical synthesis. Features: Offers a wide overview of dehydrogenation catalytic chemistry catalyzed by transition metals and their compounds. Helps design novel and more benign and uncomplicated protocols for the s...
This handbook brings together, under a single cover, all aspects of the chemistry, physics, and engineering of surfaces and interfaces of materials currently studied in academic and industrial research. It covers different experimental and theoretical aspects of surfaces and interfaces, their physical properties, and spectroscopic techniques that have been applied to a wide class of inorganic, organic, polymer, and biological materials. The diversified technological areas of surface science reflect the explosion of scientific information on surfaces and interfaces of materials and their spectroscopic characterization. The large volume of experimental data on chemistry, physics, and engineeri...
An up-to-date and two volume overview of recent developments in the field of chemocatalytic and enzymatic processes for the transformation of renewable material into essential chemicals and fuels. Experts from both academia and industry discuss catalytic processes currently under development as well as those already in commercial use for the production of bio-fuels and bio-based commodity chemicals. As such, they cover drop-in commodity chemicals and fuels, as well as bio-based monomers and polymers, such as acrylic acid, glycols, polyesters and polyolefins. In addition, they also describe reactions applied to waste and biomass valorization and integrated biorefining strategies. With its comprehensive coverage of the topic, this is an indispensable reference for chemists working in the field of catalysis, industrial chemistry, sustainable chemistry, and polymer synthesis.
This two-volume book provides an overview of physical techniques used to characterize the structure of solid materials, on the one hand, and to investigate the reactivity of their surface, on the other. Therefore this book is a must-have for anyone working in fields related to surface reactivity. Among the latter, and because of its most important industrial impact, catalysis has been used as the directing thread of the book. After the preface and a general introduction to physical techniques by M. Che and J.C. Vedrine, two overviews on physical techniques are presented by G. Ertl and Sir J.M. Thomas for investigating model catalysts and porous catalysts, respectively. The book is organized into four parts: Molecular/Local Spectroscopies, Macroscopic Techniques, Characterization of the Fluid Phase (Gas and/ or Liquid), and Advanced Characterization. Each chapter focuses upon the following important themes: overview of the technique, most important parameters to interpret the experimental data, practical details, applications of the technique, particularly during chemical processes, with its advantages and disadvantages, conclusions.
This book is a comprehensive, theoretical, practical, and thorough guide to XAFS spectroscopy. The book addresses XAFS fundamentals such as experiments, theory and data analysis, advanced XAFS methods such as operando XAFS, time-resolved XAFS, spatially resolved XAFS, total-reflection XAFS, high energy resolution XAFS, and practical applications to a variety of catalysts, nanomaterials and surfaces. This book is accessible to a broad audience in academia and industry, and will be a useful guide for researchers entering the subject and graduate students in a wide variety of disciplines.
The sixth volume of this handbook provides an overview of the research on the country-based experience of bioethanol fuels at large, Chinese, US, and European experience of bioethanol fuels, production of bioethanol fuel-based biohydrogen fuels for fuel cells, bioethanol fuel cells, and bioethanol fuel-based biochemicals with a collection of 17 chapters. Thus, it complements the fifth volume of this handbook. Hence, the sixth volume indicates that the research on the evaluation and utilization of bioethanol fuels has intensified in recent years to become a major part of the bioenergy and biofuels research together primarily with biodiesel, biohydrogen, and biogas research as a sustainable alternative to crude oil-based gasoline and petrodiesel fuels as well as natural gas and syngas. This book is intended for students, researchers, engineers, policy makers, economist, business managers, and social scientists, working on the production, utilization and evaluation of bioethanol fuels.