You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains almost all of the papers that were presented at the Workshop on Stochastic Theory and Control that was held at the Univ- sity of Kansas, 18–20 October 2001. This three-day event gathered a group of leading scholars in the ?eld of stochastic theory and control to discuss leading-edge topics of stochastic control, which include risk sensitive control, adaptive control, mathematics of ?nance, estimation, identi?cation, optimal control, nonlinear ?ltering, stochastic di?erential equations, stochastic p- tial di?erential equations, and stochastic theory and its applications. The workshop provided an opportunity for many stochastic control researchers to network and discuss ...
Adaptive control is a modern approach to controlling systems with large parametric uncertainties, enabling performance to reach new heights. By compensating for unexpected parametric uncertainties, whether due to equipment failure or wear and tear, it not only enhances system reliability but also extends equipment lifespan, thereby reducing costs. This book showcases the latest advances in the theory and application of adaptive control, contributed by leading researchers in the field. Alongside theoretical insights, it presents practical examples of adaptive control applications, offering a comprehensive understanding of its advantages across a diverse range of control systems.
In the mathematical treatment of many problems which arise in physics, economics, engineering, management, etc., the researcher frequently faces two major difficulties: infinite dimensionality and randomness of the evolution process. Infinite dimensionality occurs when the evolution in time of a process is accompanied by a space-like dependence; for example, spatial distribution of the temperature for a heat-conductor, spatial dependence of the time-varying displacement of a membrane subject to external forces, etc. Randomness is intrinsic to the mathematical formulation of many phenomena, such as fluctuation in the stock market, or noise in communication networks. Control theory of distribu...
This handbook incorporates new developments in automation. It also presents a widespread and well-structured conglomeration of new emerging application areas, such as medical systems and health, transportation, security and maintenance, service, construction and retail as well as production or logistics. The handbook is not only an ideal resource for automation experts but also for people new to this expanding field.
In view of Professor Wendell Fleming's many fundamental contributions, his profound influence on the mathematical and systems theory communi ties, his service to the profession, and his dedication to mathematics, we have invited a number of leading experts in the fields of control, optimiza tion, and stochastic systems to contribute to this volume in his honor on the occasion of his 70th birthday. These papers focus on various aspects of stochastic analysis, control theory and optimization, and applications. They include authoritative expositions and surveys as well as research papers on recent and important issues. The papers are grouped according to the following four major themes: (1) lar...
Contains papers based on talks given at the first AMS-IMS-SIAM Joint Summer Research Conference on Mathematics of Finance held at Snowbird. This book includes such topics as modeling, estimation, optimization, control, and risk assessment and management. It is suitable for students interested in mathematical finance.
This volume collects papers, based on invited talks given at the IMA workshop in Modeling, Stochastic Control, Optimization, and Related Applications, held at the Institute for Mathematics and Its Applications, University of Minnesota, during May and June, 2018. There were four week-long workshops during the conference. They are (1) stochastic control, computation methods, and applications, (2) queueing theory and networked systems, (3) ecological and biological applications, and (4) finance and economics applications. For broader impacts, researchers from different fields covering both theoretically oriented and application intensive areas were invited to participate in the conference. It brought together researchers from multi-disciplinary communities in applied mathematics, applied probability, engineering, biology, ecology, and networked science, to review, and substantially update most recent progress. As an archive, this volume presents some of the highlights of the workshops, and collect papers covering a broad range of topics.
This book introduces a comprehensive methodology for adaptive control design of parabolic partial differential equations with unknown functional parameters, including reaction-convection-diffusion systems ubiquitous in chemical, thermal, biomedical, aerospace, and energy systems. Andrey Smyshlyaev and Miroslav Krstic develop explicit feedback laws that do not require real-time solution of Riccati or other algebraic operator-valued equations. The book emphasizes stabilization by boundary control and using boundary sensing for unstable PDE systems with an infinite relative degree. The book also presents a rich collection of methods for system identification of PDEs, methods that employ Lyapunov, passivity, observer-based, swapping-based, gradient, and least-squares tools and parameterizations, among others. Including a wealth of stimulating ideas and providing the mathematical and control-systems background needed to follow the designs and proofs, the book will be of great use to students and researchers in mathematics, engineering, and physics. It also makes a valuable supplemental text for graduate courses on distributed parameter systems and adaptive control.
Outliers play an important, though underestimated, role in control engineering. Traditionally they are unseen and neglected. In opposition, industrial practice gives frequent examples of their existence and their mostly negative impacts on the control quality. The origin of outliers is never fully known. Some of them are generated externally to the process (exogenous), like for instance erroneous observations, data corrupted by control systems or the effect of human intervention. Such outliers appear occasionally with some unknow probability shifting real value often to some strange and nonsense value. They are frequently called deviants, anomalies or contaminants. In most cases we are inter...
As is well known, Pontryagin's maximum principle and Bellman's dynamic programming are the two principal and most commonly used approaches in solving stochastic optimal control problems. * An interesting phenomenon one can observe from the literature is that these two approaches have been developed separately and independently. Since both methods are used to investigate the same problems, a natural question one will ask is the fol lowing: (Q) What is the relationship betwccn the maximum principlc and dy namic programming in stochastic optimal controls? There did exist some researches (prior to the 1980s) on the relationship between these two. Nevertheless, the results usually werestated in h...