You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
* Original articles and survey articles in honor of the sixtieth birthday of Carlos A. Berenstein reflect his diverse research interests from interpolation to residue theory to deconvolution and its applications to issues ranging from optics to the study of blood flow * Contains both theoretical papers in harmonic and complex analysis, as well as more applied work in signal processing * Top-notch contributors in their respective fields
This volume is dedicated to the legacy of David R. Adams (1941-2021) and discusses calculus of variations, functional - harmonic - potential analysis, partial differential equations, and their applications in modeling, mathematical physics, and differential - integral geometry.
This volume is a collection of papers reflecting the conference held in Nahariya, Israel in honor of Professor Lawrence Zalcman's sixtieth birthday. The papers, many written by leading authorities, range widely over classical complex analysis of one and several variables, differential equations, and integral geometry. Topics covered include, but are not limited to, these areas within the theory of functions of one complex variable: complex dynamics, elliptic functions, Kleinian groups, quasiconformal mappings, Tauberian theorems, univalent functions, and value distribution theory. Altogether, the papers in this volume provide a comprehensive overview of activity in complex analysis at the beginning of the twenty-first century and testify to the continuing vitality of the interplay between classical and modern analysis. It is suitable for graduate students and researchers interested in computer analysis and differential geometry. Information for our distributors: This book is co-published with Bar-Ilan University.
The fundamental contributions of Professor Maz'ya to the theory of function spaces and especially Sobolev spaces are well known and often play a key role in the study of different aspects of the theory, which is demonstrated, in particular, by presented new results and reviews from world-recognized specialists. Sobolev type spaces, extensions, capacities, Sobolev inequalities, pseudo-Poincare inequalities, optimal Hardy-Sobolev-Maz'ya inequalities, Maz'ya's isocapacitary inequalities in a measure-metric space setting and many other actual topics are discussed.
This monograph contains papers that were delivered at the special session on Geometric Potential Analysis, that was part of the Mathematical Congress of the Americas 2021, virtually held in Buenos Aires. The papers, that were contributed by renowned specialists worldwide, cover important aspects of current research in geometrical potential analysis and its applications to partial differential equations and mathematical physics.
This volume contains the Proceedings of the Conference on Interpolation Theory and Applications in honor of Professor Michael Cwikel (Miami, FL, 2006). The central topic of this book is interpolation theory in its broadest sense, with special attention to its applications to analysis. The articles include applications to classical analysis, harmonic analysis, partial differential equations, function spaces, image processing, geometry of Banach spaces, and more. This volume emphasizes remarkable connections between several branches of pure and applied analysis. Graduate students and researchers in analysis will find it very useful.
Harmonic Analysis in China is a collection of surveys and research papers written by distinguished Chinese mathematicians from within the People's Republic of China and expatriates. The book covers topics in analytic function spaces of several complex variables, integral transforms, harmonic analysis on classical Lie groups and manifolds, LP- estimates of the Cauchy-Riemann equations and wavelet transforms. The reader will also be able to trace the great influence of the late Professor Loo-keng Hua's ideas and methods on research into harmonic analysis on classical domains and the theory of functions of several complex variables. Western scientists will thus become acquainted with the unique features and future trends of harmonic analysis in China. Audience: Analysts, as well as engineers and physicists who use harmonic analysis.
The Norbert Wiener Center for Harmonic Analysis and Applications provides a state-of-the-art research venue for the broad emerging area of mathematical engineering in the context of harmonic analysis. This two-volume set consists of contributions from speakers at the February Fourier Talks (FFT) from 2006-2011. The FFT are organized by the Norbert Wiener Center in the Department of Mathematics at the University of Maryland, College Park. These volumes span a large spectrum of harmonic analysis and its applications. They are divided into the following parts: Volume I · Sampling Theory · Remote Sensing · Mathematics of Data Processing · Applications of Data Processing Volume II · Measure Theory · Filtering · Operator Theory · Biomathematics Each part provides state-of-the-art results, with contributions from an impressive array of mathematicians, engineers, and scientists in academia, industry, and government. Excursions in Harmonic Analysis: The February Fourier Talks at the Norbert Wiener Center is an excellent reference for graduate students, researchers, and professionals in pure and applied mathematics, engineering, and physics.