You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This indispensable collection of seminal papers on ferroelectricity provides an overview over almost a hundred years of basic and applied research. Containing historic contributions from renowned authors, this book presents developments in an area of science that is still rapidly growing. Although primarily aimed at scientists and academics involved in research, this will also be of use to students as well as newcomers to the field.
The 20th Century has been called the Century of Physics. It could be even more appropriate to call it the Century of Solid State Physics. All the technological developments which had changed the world by the end of the century had been based upon previous scientific developments in Solid State Physics. The Braggs, Debye, Bardeen, Landau were certainly at the forefront of all those revolutionary changes. Readership: Final-year undergraduates, graduate students, teachers, researchers working in materials physics, condensed matter/solid-state physics.
This book compiles spectroscopy methods under high pressure to investigate different systems such as guest-host interactions, chemical reactions, multiferroics, lanthanide ions and-doped glasses or in general inorganic materials. Among others, luminescence studies, inelastic scattering as well as infrared and Raman studies under high pressure are discussed and described regarding various applications.
This book begins by introducing the effective field approach, the simplest approach to phase transitions. It provides an intuitive approximation to the physics of such diverse phenomena as liquid-vapor transitions, ferromagnetism, superconductivity, order-disorder in alloys, ferroelectricity, superfluidity and ferroelasticity. The connection between the effective field approach and Landau's theory is stressed.The main coverage is devoted to specific applications of the effective field concept to ferroelectric systems, both hydrogen bonded ferroelectrics, like those in the TGS family, and oxide ferroelectrics, like pure and mixed perovskites.
tailor-made molecules and indicated what kind of compounds could be prepared in the near future. In several evening and weekend sessions some participants presented summaries of their recent work and these and other new results were discussed. A draft of these discussions could not be added in printed form because of the 1 imitations set by the total page number of this volume, but to give at least an idea of the problems touched upon during these sessions, a 1 ist of the main contributors together with the title of the conribution discussed is given as an appendix. The reader might contact these authors directly if interested in special recent results. I hope that the participants have prof...
Solid State Physics
From Nobel Prize-winning work in atomic physics to community concerns over radiation leaks, Brookhaven National Laboratory's ups and downs track the changing fortunes of "big science" in the United States since World War II. But Brookhaven is also unique; it was the first major national laboratory built specifically for basic civilian research. In Making Physics, Robert P. Crease brings to life the people, the instruments, the science, and the politics of Brookhaven's first quarter-century.