You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
We introduce a geometric transition between two homogeneous three-dimensional geometries: hyperbolic geometry and anti de Sitter (AdS) geometry. Given a path of three-dimensional hyperbolic structures that collapse down onto a hyperbolic plane, we describe a method for constructing a natural continuation of this path into AdS structures. In particular, when hyperbolic cone manifolds collapse, the AdS manifolds generated on the "other side" of the transition have tachyon singularities. The method involves the study of a new transitional geometry called half-pipe geometry. We also discuss combinatorial/algebraic tools for constructing transitions using ideal tetrahedra. Using these tools we prove that transitions can always be constructed when the underlying manifold is a punctured torus bundle.
The Ahlfors–Bers Colloquia commemorate the mathematical legacy of Lars Ahlfors and Lipman Bers. The core of this legacy lies in the fields of geometric function theory, Teichmüller theory, hyperbolic geometry, and partial differential equations. Today we see the influence of Ahlfors and Bers on algebraic geometry, mathematical physics, dynamics, probability, geometric group theory, number theory and topology. Recent years have seen a flowering of this legacy with an increased interest in their work. This current volume contains articles on a wide variety of subjects that are central to this legacy. These include papers in Kleinian groups, classical Riemann surface theory, Teichmüller theory, mapping class groups, geometric group theory, and statistical mechanics.
This volume contains the proceedings of the virtual workshop on Computational Aspects of Discrete Subgroups of Lie Groups, held from June 14 to June 18, 2021, and hosted by the Institute for Computational and Experimental Research in Mathematics (ICERM), Providence, Rhode Island. The major theme deals with a novel domain of computational algebra: the design, implementation, and application of algorithms based on matrix representation of groups and their geometric properties. It is centered on computing with discrete subgroups of Lie groups, which impacts many different areas of mathematics such as algebra, geometry, topology, and number theory. The workshop aimed to synergize independent strands in the area of computing with discrete subgroups of Lie groups, to facilitate solution of theoretical problems by means of recent advances in computational algebra.
"Mathematicians David Fisher, Dmitry Kleinbock, and Gregory Soifer highlight in this edited collection the foundations and evolution of research by mathematician Gregory Margulis. Margulis is unusual in the degree to which his solutions to particular problems have opened new vistas of mathematics. Margulis' ideas were central, for example, to developments that led to the recent Fields Medals of Elon Lindenstrauss and Maryam Mirzhakhani. The broad goal of this volume is to introduce these areas, their development, their use in current research, and the connections between them. The foremost experts on the topic have written each of the chapters in this volume with a view to making them accessible by graduate students and by experts in other parts of mathematics"--
We prove the existence and uniqueness of harmonic maps in degree one homotopy classes of closed, orientable surfaces of positive genus, where the target has non-positive gauss curvature and conic points with cone angles less than $2\pi$. For a homeomorphism $w$ of such a surface, we prove existence and uniqueness of minimizers in the homotopy class of $w$ relative to the inverse images of the cone points with cone angles less than or equal to $\pi$. We show that such maps are homeomorphisms and that they depend smoothly on the target metric. For fixed geometric data, the space of minimizers in relative degree one homotopy classes is a complex manifold of (complex) dimension equal to the number of cone points with cone angles less than or equal to $\pi$. When the genus is zero, we prove the same relative minimization provided there are at least three cone points of cone angle less than or equal to $\pi$.
The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.
An essential introduction to discrete and computational geometry Discrete geometry is a relatively new development in pure mathematics, while computational geometry is an emerging area in applications-driven computer science. Their intermingling has yielded exciting advances in recent years, yet what has been lacking until now is an undergraduate textbook that bridges the gap between the two. Discrete and Computational Geometry offers a comprehensive yet accessible introduction to this cutting-edge frontier of mathematics and computer science. This book covers traditional topics such as convex hulls, triangulations, and Voronoi diagrams, as well as more recent subjects like pseudotriangulati...
This volume contains the proceedings of a conference celebrating the work of Steven Boyer, held from June 2–6, 2018, at Université du Québec à Montréal, Montréal, Québec, Canada. Boyer's contributions to research in low-dimensional geometry and topology, and to the Canadian mathematical community, were recognized during the conference. The articles cover a broad range of topics related, but not limited, to the topology and geometry of 3-manifolds, properties of their fundamental groups and associated representation varieties.