You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Plasma-based techniques are widely and successfully used across the field of materials processing, advanced nanosynthesis, and nanofabrication. The diversity of currently available processing architectures based on or enhanced by the use of plasmas is vast, and one can easily get lost in the opportunities presented by each of these configurations. This mini-book provides a concise outline of the most important concepts and architectures in plasma-assisted processing of materials, helping the reader navigate through the fundamentals of plasma system selection and optimization. Architectures discussed in this book range from the relatively simple, user-friendly types of plasmas produced using direct current, radio-frequency, microwave, and arc systems, to more sophisticated advanced systems based on incorporating and external substrate architectures, and complex control mechanisms of configured magnetic fields and distributed plasma sources.
New Functional Biomaterials for Medicine and Healthcare provides a concise summary of the latest developments in key types of biomaterials. The book begins with an overview of the use of biomaterials in contemporary healthcare and the process of developing novel biomaterials; the key issues and challenges associated with the design of complex implantable systems are also highlighted. The book then reviews the main materials used in functional biomaterials, particularly their properties and applications. Individual chapters focus on both natural and synthetic polymers, metallic biomaterials, and bio-inert and bioactive ceramics. Advances in processing technologies and our understanding of mat...
This book highlights plasma science and technology-related research and development work at institutes and universities networked through Asian African Association for Plasma Training (AAAPT) which was established in 1988. The AAAPT, with 52 member institutes in 24 countries, promotes the initiation and intensification of plasma research and development through cooperation and technology sharing. With 13 chapters on fusion-relevant, laboratory and industrial plasmas for wide range of applications and basic research and a chapter on AAAPT network, it demonstrates how, with collaborations, high-quality, industrially relevant academic and scientific research on fusion, industrial and laboratory plasmas and plasma diagnostics can be successfully pursued in small research labs. These plasma sciences and technologies include pioneering breakthroughs and applications in (i) fusion relevant research in the quest for long-term, clean energy source development using high-temperature, high- density plasmas and (ii) multibillion-dollar, low-temperature, non-equilibrium and thermal industrial plasmas used in processing, synthesis and electronics.
With its content taken from only the very latest results, this is an extensive summary of the various polymeric materials used for biomedical applications. Following an introduction listing various functional polymers, including conductive, biocompatible and conjugated polymers, the book goes on to discuss different synthetic polymers that can be used, for example, as hydrogels, biochemical sensors, functional surfaces, and natural degradable materials. Throughout, the focus is on applications, with worked examples for training purposes as well as case studies included. The whole is rounded off with a look at future trends.
Over the last few years, bacterial adhesion has become a more and more important and active scientific area, but the field lacks communication and scientific exchange between medical and microbiology researchers who work with the relevant biological systems, and biochemists, structural biologists and physicists, who know and understand the physical methods best suited to investigate the phenomenon at the molecular level. The field consequently would benefit from a cross-disciplinary conference enabling such communication. This book tries to bridge the gap between the disciplines.
Functional Nanocomposite Hydrogels: Synthesis, Characterization, and Biomedical Applications reviews how the unique properties of nanoscale composite materials make them ideal candidates for use in biomedical hydrogels. The book covers a range of key nanocomposite materials for use in biomedical hydrogels, including graphene quantum dot, cellulose and collagen nanocomposites. A wide selection of biomedical applications for functional nanocomposite hydrogels is explored, from drug delivery and cancer therapy, to wound healing and bioimaging. This is a key reference for those working in the fields of biomaterials, nanotechnology, pharmacology, biomedical engineering, and anyone with a particul...
Antimicrobial susceptibility profile and effect of stem bark extracts of Curtisia dentata on multi-drug resistant verotoxic Escherichia coli and Acinetobacter spp. isolates obtained from water and wastewater samples / Hamuel James Doughari [und weitere]. Antimicrobial utilization in intensive care units of a private tertiary care hospital / Pramil Tiwari, Vani Yadav and Shilpi Singh. Bacterial clearance from blood in mice infected by S. pneumoniae (penicillin MIC = 16 ug/ml) presenting specific IgG (non-protective levels) and treated with sub-therapeutic regimens of cefditoren (a highly bound cephalosporin) / Fabio Cafini [und weitere]. Characterisation of methicillin resistant Staphylococcu...
‘Antibacterial Surfaces’ covers the advances being made in the design of antibacterial surfaces, which have the ability to either prevent the initial attachment of bacterial cells, or kill any cells that come into contact with these surfaces. This book discusses the mechanisms associated with the attachment of bacteria to surfaces and the main strategies currently being employed to control the initial attachment processes. These strategies are expanded upon in the subsequent chapters, where the definition and description of antibacterial surfaces are clarified, as are the mechanisms that come into play when determining the effectiveness of an antibacterial surface. Subsequent chapters discuss a number of naturally occurring antibacterial surfaces, the methods currently being used for producing synthetic antibacterial surfaces, and the current and potential applications of such materials. This book will be of great interest to people who work with materials that need to remain free of bacterial films, from designing safer biomedical implants to the production of self-cleaning materials where the prevention of biofilm formation has significant economic advantages.
With the increasing world-energy demand there is a growing necessity for clean and renewable energy. This book offers an introduction to novel types of solar cells, which are processed from solution. We discuss fabrication, different architectures and their device physics of these solar cells on the bases of the author‘s teaching course on a master degree level. A comparison with conventional solar cells is given and the specialties of organic, hybrid and perovskite solar cells are emphasized.
This book is a printed edition of the Special Issue "Polymers from Renewable Resources" that was published in Polymers