You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In the past decade there has been an extemely rapid growth in the interest and development of quantum group theory.This book provides students and researchers with a practical introduction to the principal ideas of quantum groups theory and its applications to quantum mechanical and modern field theory problems. It begins with a review of, and introduction to, the mathematical aspects of quantum deformation of classical groups, Lie algebras and related objects (algebras of functions on spaces, differential and integral calculi). In the subsequent chapters the richness of mathematical structure and power of the quantum deformation methods and non-commutative geometry is illustrated on the dif...
This book contains a collection of essays written in honor of Wolfhart Zimmermann''s 80th birthday, most of them based on talks presented at a symposium in his honor.The book shows the unifying force of a subject (Quantum Field Theory) and a person (Zimmermann). It ranges from fundamental questions in quantum physics over applications to particle physics and noncommutative geometry to the latest developments in many body theory and dynamical systems. These key ideas are elucidated by worldwide-recognized experts including Faddeev, Becchi, Buchholz, Lowenstein and Salmhofer.Readers seeking examples on how a subject has evolved, diversified and deepened over the course of several decades and how a single person can influence this process can find here a perfect illustration. Altogether, readers are treated to a high-brow intellectual adventure.
Noncommutative algebras, rings and other noncommutative objects, along with their more classical commutative counterparts, have become a key part of modern mathematics, physics and many other fields. The q-deformed Heisenberg algebras defined by deformed Heisenberg canonical commutation relations of quantum mechanics play a distinguished role as important objects in pure mathematics and in many applications in physics. The structure of commuting elements in an algebra is of fundamental importance for its structure and representation theory as well as for its applications. The main objects studied in this monograph are q-deformed Heisenberg algebras -- more specifically, commuting elements in...
With applications in quantum field theory, general relativity and elementary particle physics, this three-volume work studies the invariance of differential operators under Lie algebras, quantum groups and superalgebras. This second volume covers quantum groups in their two main manifestations: quantum algebras and matrix quantum groups. The exposition covers both the general aspects of these and a great variety of concrete explicitly presented examples. The invariant q-difference operators are introduced mainly using representations of quantum algebras on their dual matrix quantum groups as carrier spaces. This is the first book that covers the title matter applied to quantum groups. Contents Quantum Groups and Quantum Algebras Highest-Weight Modules over Quantum Algebras Positive-Energy Representations of Noncompact Quantum Algebras Duality for Quantum Groups Invariant q-Difference Operators Invariant q-Difference Operators Related to GLq(n) q-Maxwell Equations Hierarchies
Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.
Professor Jerzy Lukierski, an outstanding specialist in the domain of quantum groups, will reach on May 21, 1995 the age of sixty. This is a birthday volume dedicated to him. It assumes the form of a collection of papers on a wide range of topics in modern research area from theoretical high energy physics to mathematical physics. Various topics of quantum groups will be treated with a special emphasis. Quantum groups is nowadays a very fashionable subject both in mathematics and high energy physics.
Noncommutative geometry provides a powerful tool for regularizing quantum field theories in the form of fuzzy physics. Fuzzy physics maintains symmetries, has no fermion-doubling problem and represents topological features efficiently. These lecture notes provide a comprehensive introduction to the field. Starting with the construction of fuzzy spaces, using the concrete examples of the fuzzy sphere and fuzzy complex projective spaces, the book moves on to discuss the technology of star products on noncommutative R2d and on the fuzzy sphere. Scalar, spinor and gauge field theories as well as extended objects such as monopoles and nonlinear sigma modes are treated in considerable detail. A detailed treatment of the regularization of supersymmetry is given using the techniques of fuzzy physics.
This volume is targeted at theoretical physicists, mathematical physicists and mathematicians working on mathematical models for physical systems based on symmetry methods and in the field of Lie theory understood in the widest sense. It includes contributions on Lie theory, with two papers by the famous mathematician Kac (one paper with Bakalov), further papers by Aoki, Moens. Some other important contributions are in: field theory - Todorov, Grosse, Kreimer, Sokatchev, Gomez; string theory — Minwalla, Staudacher, Kostov; integrable systems - Belavin, Helminck, Ragoucy; quantum-mechanical and probabilistic systems — Goldin, Van der Jeugt, Leandre; quantum groups and related objects — Jakobsen, Arnaudon, Andruskiewitsch; and others.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings® (ISTP® / ISI Proceedings)• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)• CC Proceedings — Engineering & Physical Sciences
The book consists of lectures delivered at the International Symposium on Coherent States: Past, Present, and Future, held in Oak Ridge, Tennessee, June 14 - 17 1993. Both theoretical and experimental subjects are treated. Theoretical subjects dealt with include quantum optics, quantum chaos, condensed matter physics, nuclear physics, high energy physics and foundational issues such as quantum-classical connections and various semiclassical quantization schemes. Experimental topics dealt with principally concern atomic and molecular physics and especially lasers. Topics related to coherent states, most notably wavelets, are also included.
Quantum symmetry modelled through quantum group or its dual, quantum algebra, is a very active field of relevant physical and mathematical research stimulated often by physical intuition and with promising physical applications. This volume gives some information on the progress of this field during the years after the quantum group workshop in Clausthal 1989. Quantum symmetry is connected with very different approaches and views. The field is not yet coherent; there are different notions of quantum groups and of quantum algebras through algebraic deformations of groups and algebras. Hence its development has various directions following more special mathematical and physical interests.