Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Junctionless Field-Effect Transistors
  • Language: en
  • Pages: 496

Junctionless Field-Effect Transistors

A comprehensive one-volume reference on current JLFET methods, techniques, and research Advancements in transistor technology have driven the modern smart-device revolution—many cell phones, watches, home appliances, and numerous other devices of everyday usage now surpass the performance of the room-filling supercomputers of the past. Electronic devices are continuing to become more mobile, powerful, and versatile in this era of internet-of-things (IoT) due in large part to the scaling of metal-oxide semiconductor field-effect transistors (MOSFETs). Incessant scaling of the conventional MOSFETs to cater to consumer needs without incurring performance degradation requires costly and comple...

High-k Gate Dielectric Materials
  • Language: en
  • Pages: 248

High-k Gate Dielectric Materials

  • Type: Book
  • -
  • Published: 2020-12-18
  • -
  • Publisher: CRC Press

This volume explores and addresses the challenges of high-k gate dielectric materials, one of the major concerns in the evolving semiconductor industry and the International Technology Roadmap for Semiconductors (ITRS). The application of high-k gate dielectric materials is a promising strategy that allows further miniaturization of microelectronic components. This book presents a broad review of SiO2 materials, including a brief historical note of Moore’s law, followed by reliability issues of the SiO2 based MOS transistor. It goes on to discuss the transition of gate dielectrics with an EOT ~ 1 nm and a selection of high-k materials. A review of the various deposition techniques of diffe...

Semiconductor Device Physics and Simulation
  • Language: en
  • Pages: 352

Semiconductor Device Physics and Simulation

The advent of the microelectronics technology has made ever-increasing numbers of small devices on a same chip. The rapid emergence of ultra-large-scaled-integrated (ULSI) technology has moved device dimension into the sub-quarter-micron regime and put more than 10 million transistors on a single chip. While traditional closed-form analytical models furnish useful intuition into how semiconductor devices behave, they no longer provide consistently accurate results for all modes of operation of these very small devices. The reason is that, in such devices, various physical mechanisms affect the device performance in a complex manner, and the conventional assumptions (i. e. , one-dimensional t...

Design of Advanced Low-power, Sub-quarter Micron Metal Oxide Semiconductor Field Effect Transistors (MOSFET)
  • Language: en
  • Pages: 236
Complementary Metal Oxide Semiconductor
  • Language: en
  • Pages: 162

Complementary Metal Oxide Semiconductor

In this book, Complementary Metal Oxide Semiconductor ( CMOS ) devices are extensively discussed. The topics encompass the technology advancement in the fabrication process of metal oxide semiconductor field effect transistors or MOSFETs (which are the fundamental building blocks of CMOS devices) and the applications of transistors in the present and future eras. The book is intended to provide information on the latest technology development of CMOS to researchers, physicists, as well as engineers working in the field of semiconductor transistor manufacturing and design.

The Physics of Semiconductors
  • Language: en
  • Pages: 784

The Physics of Semiconductors

Modern fabrication techniques have made it possible to produce semiconductor devices whose dimensions are so small that quantum mechanical effects dominate their behavior. This book describes the key elements of quantum mechanics, statistical mechanics, and solid-state physics that are necessary in understanding these modern semiconductor devices. The author begins with a review of elementary quantum mechanics, and then describes more advanced topics, such as multiple quantum wells. He then disusses equilibrium and nonequilibrium statistical mechanics. Following this introduction, he provides a thorough treatment of solid-state physics, covering electron motion in periodic potentials, electron-phonon interaction, and recombination processes. The final four chapters deal exclusively with real devices, such as semiconductor lasers, photodiodes, flat panel displays, and MOSFETs. The book contains many homework exercises and is suitable as a textbook for electrical engineering, materials science, or physics students taking courses in solid-state device physics. It will also be a valuable reference for practising engineers in optoelectronics and related areas.

Oxide Electronics
  • Language: en
  • Pages: 628

Oxide Electronics

Oxide Electronics Multiple disciplines converge in this insightful exploration of complex metal oxides and their functions and properties Oxide Electronics delivers a broad and comprehensive exploration of complex metal oxides designed to meet the multidisciplinary needs of electrical and electronic engineers, physicists, and material scientists. The distinguished author eschews complex mathematics whenever possible and focuses on the physical and functional properties of metal oxides in each chapter. Each of the sixteen chapters featured within the book begins with an abstract and an introduction to the topic, clear explanations are presented with graphical illustrations and relevant equati...

Strain Effect in Semiconductors
  • Language: en
  • Pages: 353

Strain Effect in Semiconductors

Strain Effect in Semiconductors: Theory and Device Applications presents the fundamentals and applications of strain in semiconductors and semiconductor devices that is relevant for strain-enhanced advanced CMOS technology and strain-based piezoresistive MEMS transducers. Discusses relevant applications of strain while also focusing on the fundamental physics pertaining to bulk, planar, and scaled nano-devices. Hence, this book is relevant for current strained Si logic technology as well as for understanding the physics and scaling for future strained nano-scale devices.

Fundamentals of III-V Semiconductor MOSFETs
  • Language: en
  • Pages: 451

Fundamentals of III-V Semiconductor MOSFETs

Fundamentals of III-V Semiconductor MOSFETs presents the fundamentals and current status of research of compound semiconductor metal-oxide-semiconductor field-effect transistors (MOSFETs) that are envisioned as a future replacement of silicon in digital circuits. The material covered begins with a review of specific properties of III-V semiconductors and available technologies making them attractive to MOSFET technology, such as band-engineered heterostructures, effect of strain, nanoscale control during epitaxial growth. Due to the lack of thermodynamically stable native oxides on III-V's (such as SiO2 on Si), high-k oxides are the natural choice of dielectrics for III-V MOSFETs. The key ch...

FinFETs and Other Multi-Gate Transistors
  • Language: en
  • Pages: 350

FinFETs and Other Multi-Gate Transistors

This book explains the physics and properties of multi-gate field-effect transistors (MuGFETs), how they are made and how circuit designers can use them to improve the performances of integrated circuits. It covers the emergence of quantum effects due to the reduced size of the devices and describes the evolution of the MOS transistor from classical structures to SOI (silicon-on-insulator) and then to MuGFETs.