You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Covers theory, practice and programming in Bayesian phylogenetics with BEAST. The why, how and what of BEAST 2.
This book constitutes the refereed proceedings of the 8th Pacific-Asia Conference on Knowledge Discovery and Data mining, PAKDD 2004, held in Sydney, Australia in May 2004. The 50 revised full papers and 31 revised short papers presented were carefully reviewed and selected from a total of 238 submissions. The papers are organized in topical sections on classification; clustering; association rules; novel algorithms; event mining, anomaly detection, and intrusion detection; ensemble learning; Bayesian network and graph mining; text mining; multimedia mining; text mining and Web mining; statistical methods, sequential data mining, and time series mining; and biomedical data mining.
Uncertainty Proceedings 1994
This volume is a selection of papers presented at the Fourth International Workshop on Artificial Intelligence and Statistics held in January 1993. These biennial workshops have succeeded in bringing together researchers from Artificial Intelligence and from Statistics to discuss problems of mutual interest. The exchange has broadened research in both fields and has strongly encour aged interdisciplinary work. The theme ofthe 1993 AI and Statistics workshop was: "Selecting Models from Data". The papers in this volume attest to the diversity of approaches to model selection and to the ubiquity of the problem. Both statistics and artificial intelligence have independently developed approaches to model selection and the corresponding algorithms to implement them. But as these papers make clear, there is a high degree of overlap between the different approaches. In particular, there is agreement that the fundamental problem is the avoidence of "overfitting"-Le., where a model fits the given data very closely, but is a poor predictor for new data; in other words, the model has partly fitted the "noise" in the original data.
Orphan diseases pose diagnostic challenges due to complex pathologies, limited epidemiological data, and clinical experience. The development of artificial intelligence and machine learning methods has the potential to enhance the accuracy of decision support systems, improving diagnosis outcomes for rare disease patients. This research aims to create a repository for characterizing rare diseases by collecting past experiences of diagnosed patients, reducing gaps in symptom interpretation. This interdisciplinary study, in collaboration with medical experts, has resulted in a computer-aided diagnostic support system utilizing statistical analysis and machine learning algorithms. The system in...
This two-volume handbook presents a collection of novel methodologies with applications and illustrative examples in the areas of data-driven computational social sciences. Throughout this handbook, the focus is kept specifically on business and consumer-oriented applications with interesting sections ranging from clustering and network analysis, meta-analytics, memetic algorithms, machine learning, recommender systems methodologies, parallel pattern mining and data mining to specific applications in market segmentation, travel, fashion or entertainment analytics. A must-read for anyone in data-analytics, marketing, behavior modelling and computational social science, interested in the lates...
This book constitutes the refereed proceedings of the 19th Australian Joint Conference on Artificial Intelligence, AI 2006, held in Hobart, Australia, December 2006. Coverage includes foundations and knowledge based system, machine learning, connectionist AI, data mining, intelligent agents, cognition and user interface, vision and image processing, natural language processing and Web intelligence, neural networks, robotics, and AI applications.
Consider the problem of a robot (algorithm, learning mechanism) moving along the real line attempting to locate a particular point ? . To assist the me- anism, we assume that it can communicate with an Environment (“Oracle”) which guides it with information regarding the direction in which it should go. If the Environment is deterministic the problem is the “Deterministic Point - cation Problem” which has been studied rather thoroughly [1]. In its pioneering version [1] the problem was presented in the setting that the Environment could charge the robot a cost which was proportional to the distance it was from the point sought for. The question of having multiple communicating robots...
This book constitutes the refereed proceedings of the 17th Australian Conference on Artificial Intelligence, AI 2004, held in Cairns, Australia, in December 2004. The 78 revised full papers and 62 revised short papers presented were carefully reviewed and selected from 340 submissions. The papers are organized in topical sections on agents; biomedical applications; computer vision, image processing, and pattern recognition; ontologies, knowledge discovery and data mining; natural language and speech processing; problem solving and reasoning; robotics; and soft computing.
This book constitutes the refereed proceedings of the 21th Australasian Joint Conference on Artificial Intelligence, AI 2008, held in Auckland, New Zealand, in December 2008. The 42 revised full papers and 21 revised short papers presented together with 1 invited lecture were carefully reviewed and selected from 143 submissions. The papers are organized in topical sections on knowledge representation, constraints, planning, grammar and language processing, statistical learning, machine learning, data mining, knowledge discovery, soft computing, vision and image processing, and AI applications.