You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume shares and discusses significant new trends and developments in research and practices related to various aspects of preparing prospective secondary mathematics teachers from 2005–2015. It provides both an overview of the current state-of-the-art and outstanding recent research reports from an international perspective. The authors completed a thorough review of the literature by examining major journals in the field of mathematics education, and other journals related to teacher education and technology. The systematic review includes four major themes: field experiences; technologies, tools and resources; teachers' knowledge; and teachers' professional identities. Each of them is presented regarding theoretical perspectives, methodologies, and major findings. Then the authors discuss what is known in the field and what we still need to know related to the major topics.
A perennial discussion about teacher development is the optimal content background for teachers. In recent years, that discussion has taken center stage in the work of mathematics education researchers, mathematicians, mathematics professional developers, and mathematics education policymakers. Much of the existing and prior work in this area has been directed toward mathematical knowledge for teaching at the elementary level. The work described in this volume takes a sometimes-neglected approach, focusing on the dynamic nature of mathematical understanding rather than on a stable description of mathematical knowledge, and on mathematics for secondary teaching rather than mathematics for tea...
A perennial discussion about teacher development is the optimal content background for teachers. In recent years, that discussion has taken center stage in the work of mathematics education researchers, mathematicians, mathematics professional developers, and mathematics education policymakers. Much of the existing and prior work in this area has been directed toward mathematical knowledge for teaching at the elementary level. The work described in this volume takes a sometimes-neglected approach, focusing on the dynamic nature of mathematical understanding rather than on a stable description of mathematical knowledge, and on mathematics for secondary teaching rather than mathematics for tea...
Are sequences functions? Why can’t the popular “vertical line test” be applied in some cases to determine if a relation is a function? How does the idea of rate of change connect with simpler ideas about proportionality as well as more advanced topics in calculus? How much do you know… and how much do you need to know? Helping your high school students develop a robust understanding of functions requires that you understand mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about functions. It is organised around five big ideas, supported by multiple smaller, interconnected ideas-essential understandings. Taking you beyond a simple introduction to functions, this book will broaden and deepen your mathematical understanding of one of the most challenging topics for students and teachers. It will help you engage your students, anticipate their perplexities, avoid pitfalls and dispel misconceptions. You will also learn to develop appropriate tasks, techniques and tools for assessing students’ understanding of the topic. Focus on the ideas that you need to understand thoroughly to teach confidently.
Why does it matter whether we state definitions carefully when we all know what particular geometric figures look like? What does it mean to say that a reflection is a transformation—a function? How does the study of transformations and matrices in high school connect with later work with vector spaces in linear algebra? How much do you know… and how much do you need to know? Helping your students develop a robust understanding of geometry requires that you understand this mathematics deeply. But what does that mean? This book focuses on essential knowledge for teachers about geometry. It is organised around four big ideas, supported by multiple smaller, interconnected ideas—essential ...
Mathematics education in the United States will be shaped at all levels by those who hold doctorates in the field. As professors, they influence the structure and content of university programs in mathematics education, where future teachers are prepared. As scholars, they engage in research and lead us to a deeper and better understanding of the field. This book is a detailed study of doctoral programs in mathematics education. It stems from a national conference sponsored by the National Science Foundation. It involved participants from across the United States, as well as Brazil, Japan, Norway, and Spain, and followed up the work of an earlier conference, published in One Field, Many Path...
"A series for teaching mathematics."--P. [1] of cover.
This book comprises the Proceedings of the 12th International Congress on Mathematical Education (ICME-12), which was held at COEX in Seoul, Korea, from July 8th to 15th, 2012. ICME-12 brought together 3500 experts from 92 countries, working to understand all of the intellectual and attitudinal challenges in the subject of mathematics education as a multidisciplinary research and practice. This work aims to serve as a platform for deeper, more sensitive and more collaborative involvement of all major contributors towards educational improvement and in research on the nature of teaching and learning in mathematics education. It introduces the major activities of ICME-12 which have successfull...
The depth and breadth of a mathematics teacher’s understanding of mathematics matter most as the teacher engages in the daily work of teaching. One of the major challenges to teachers is to be ready to draw on the relevant mathematical ideas from different areas of the school curriculum and from their postsecondary mathematics experiences that can be helpful in explaining ideas to students, making instructional decisions, creating examples, and engaging in other aspects of their daily work. Being mathematically ready and confident requires teachers to engage in ongoing professional learning that helps them to connect mathematics to events like those they live on a daily basis. The purpose ...
Secondary mathematics teachers are frequently required to take a large number of mathematics courses – including advanced mathematics courses such as abstract algebra – as part of their initial teacher preparation program and/or their continuing professional development. The content areas of advanced and secondary mathematics are closely connected. Yet, despite this connection many secondary teachers insist that such advanced mathematics is unrelated to their future professional work in the classroom. This edited volume elaborates on some of the connections between abstract algebra and secondary mathematics, including why and in what ways they may be important for secondary teachers. Not...