You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Optimal Design for Nonlinear Response Models discusses the theory and applications of model-based experimental design with a strong emphasis on biopharmaceutical studies. The book draws on the authors’ many years of experience in academia and the pharmaceutical industry. While the focus is on nonlinear models, the book begins with an explanation of the key ideas, using linear models as examples. Applying the linearization in the parameter space, it then covers nonlinear models and locally optimal designs as well as minimax, optimal on average, and Bayesian designs. The authors also discuss adaptive designs, focusing on procedures with non-informative stopping. The common goals of experimental design—such as reducing costs, supporting efficient decision making, and gaining maximum information under various constraints—are often the same across diverse applied areas. Ethical and regulatory aspects play a much more prominent role in biological, medical, and pharmaceutical research. The authors address all of these issues through many examples in the book.
Advancing the development, validation, and use of patient-reported outcome (PRO) measures, Patient-Reported Outcomes: Measurement, Implementation and Interpretation helps readers develop and enrich their understanding of PRO methodology, particularly from a quantitative perspective. Designed for biopharmaceutical researchers and others in the health sciences community, it provides an up-to-date volume on conceptual and analytical issues of PRO measures. The book discusses key concepts relating to the measurement, implementation, and interpretation of PRO measures. It covers both introductory and advanced psychometric and biostatistical methods for constructing and analyzing PRO measures. The...
Wide-Ranging Coverage of Parametric Modeling in Linear and Nonlinear Mixed Effects Models Mixed Effects Models for the Population Approach: Models, Tasks, Methods and Tools presents a rigorous framework for describing, implementing, and using mixed effects models. With these models, readers can perform parameter estimation and modeling across a whole population of individuals at the same time. Easy-to-Use Techniques and Tools for Real-World Data Modeling The book first shows how the framework allows model representation for different data types, including continuous, categorical, count, and time-to-event data. This leads to the use of generic methods, such as the stochastic approximation of ...
Take Your NI Trial to the Next Level Reflecting the vast research on noninferiority (NI) designs from the past 15 years, Noninferiority Testing in Clinical Trials: Issues and Challenges explains how to choose the NI margin as a small fraction of the therapeutic effect of the active control in a clinical trial. Requiring no prior knowledge of NI testing, the book is easily accessible to both statisticians and nonstatisticians involved in drug development. With over 20 years of experience in this area, the author introduces the basic elements of the NI trials one at a time in a logical order. He discusses issues with estimating the effect size based on historical placebo control trials of the active control. The book covers fundamental concepts related to NI trials, such as assay sensitivity, constancy assumption, discounting, and preservation. It also describes patient populations, three-arm trials, and the equivalence of three or more groups.
Clinical and Statistical Considerations in Personalized Medicine explores recent advances related to biomarkers and their translation into clinical development. Leading clinicians, biostatisticians, regulators, commercial professionals, and researchers address the opportunities and challenges in successfully applying biomarkers in drug discovery and preclinical and clinical development. Robust Biomarkers for Drug Development and Disease Treatment The first four chapters discuss biomarker development from a clinical perspective. Coverage ranges from an introduction to biomarkers to advances in RNAi screens, epigenetics, and rare diseases as targets for personalized medicine approaches. Subseq...
Get Up to Speed on Many Types of Adaptive Designs Since the publication of the first edition, there have been remarkable advances in the methodology and application of adaptive trials. Incorporating many of these new developments, Adaptive Design Theory and Implementation Using SAS and R, Second Edition offers a detailed framework to understand the use of various adaptive design methods in clinical trials. New to the Second Edition Twelve new chapters covering blinded and semi-blinded sample size reestimation design, pick-the-winners design, biomarker-informed adaptive design, Bayesian designs, adaptive multiregional trial design, SAS and R for group sequential design, and much more More ana...
This volume contains the proceedings of the 8th Workshop on Model-Oriented Design and Analysis. It offers leading and pioneering work on optimal experimental designs, both from a mathematical/statistical point of view and with regard to real applications. Scientists from all over the world have contributed to this volume. Primary topics are designs for nonlinear models and applications to experimental medicine.
Statistical Analysis of Human Growth and Development is an accessible and practical guide to a wide range of basic and advanced statistical methods that are useful for studying human growth and development. Designed for nonstatisticians and statisticians new to the analysis of growth and development data, the book collects methods scattered through
Using real data sets throughout, this text introduces the latest methods for analyzing high-dimensional survival data. With an emphasis on the applications of survival analysis techniques in genetics, it presents a statistical framework for burgeoning research in this area and offers a set of established approaches for statistical analysis. The book reveals a new way of looking at how predictors are associated with censored survival time and extracts novel statistical genetic methods for censored survival time outcome from the vast amount of research results in genomics.
Statisticians and experimentalists will find the latest trends in optimal experimental design research. Some papers are pioneering contributions, leading to new open research problems. It is a colection of peer reviewed papers.