You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The new edition of this comprehensive guide provides students with the latest information and advances in medical microbiology. Divided into seven sections, the book begins with discussion on general microbiology, followed by immunology, systematic bacteriology, virology and mycology. The second edition has been fully revised and features two new sections covering hospital acquired infections and clinical microbiology. The extensive text is further enhanced by more than 600 clinical photographs, diagrams and tables. The book concludes with annexures on emerging and re-emerging infections, bioterrorism, laboratory acquired infections, and zoonosis (the transmission of disease between humans and animals). Key points Comprehensive guide to medical microbiology for students Fully revised, second edition featuring many new topics Highly illustrated with clinical photographs, diagrams and tables Previous edition (9789351529873) published in 2015
The explosion of basic and applied immunology in the first decades of the 21st century has brought forth new opportunities and challenges for immunology education at all academic levels, from professional to undergraduate, medical, graduate and post-graduate instruction. Moreover, developing methods and techniques for educating general audiences on the importance and benefits of immunology will be critical for increasing public awareness and support. One major immediate challenge consists in accommodating, within the confines of traditional immunology curricula, a body of knowledge that continues to grow exponentially in both size and complexity. Furthermore, the practical toolbox of immunol...
Noted in Annals of Pharmacotherapy
The development and function of the immune system is dependent on interactions between haematopoietic cells and non-hematopoietic stromal cells. The non-hematopoietic stromal cells create the microenvironment in which the immune system operates, providing an architectural landscape for hematopoietic cell-cell interactions and molecular cues governing haematopoietic cell positioning, growth and survival. Not surprisingly, therefore, aberrant stromal cell function has recently been shown to play a key role in the development of disease pathologies associated with immune dysfunction. For example, remodelling of lymphoid tissue stroma and the development of ectopic tertiary lymphoid tissues are ...
The biennial TNF-family conferences have been held over the past 20 years, from the time that TNF was cloned. These meetings have followed the enormous progress in this field. Much is now known about the members of the TNF ligand and receptor families, their signaling proteins, mechanisms of action and cellular functions. This volume is the proceedings of the 12th TNF International Conference, held in April 2009. This conference focuses on the physiological, pathophysiological, and medical significance of these important regulators. Sessions at the meeting specifically address their involvement in immunity, development, apoptosis, autoimmunity, cancer, and infection, the normal function and pathology of the neuronal system, as well as major unresolved questions about their mechanisms of action.
The biological sciences cover a broad array of literature types, from younger fields like molecular biology with its reliance on recent journal articles, genomic databases, and protocol manuals to classic fields such as taxonomy with its scattered literature found in monographs and journals from the past three centuries. Using the Biological Litera
Behind the stereotype of girls not doing well in science are some reasons, mostly based on one fact: They are often and most often inadvertently treated differently in the classroom.
Research demonstrates that STEM disciplines perpetuate a history of exclusion, particularly for students with marginalized identities. This poses problems particularly when science permeates every aspect of contemporary American life. Institutions’ repeated failures to disrupt systemic oppression in STEM has led to a mostly white, cisgender, and male scientific workforce replete with implicit and/or explicit biases. Education holds one pathway to disrupt systemic linkages of STEM oppression from society to the classroom. Maintaining views on science as inherently objective isolates it from the world in which it is performed. STEM education must move beyond the transactional approaches to transformative environments manifesting respect for students’ social and educational capital. We must create a STEM environment in which students with marginalized identities feel respected, listened to, and valued. We must assist students in understanding how their positionality, privilege, and power both historically and currently impacts their meaning making and understanding of STEM.
None
None