You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
O livro Práticas Pedagógicas na Educação Infantil: interlocuções, desafios e percursos nasce de um desejo dialógico de estabelecer trocas entre docentes e pesquisadores/as do campo da Educação Infantil. Essa obra é um convite a um mergulho em uma trama atravessada por experiências e narrativas das práticas pedagógicas desenvolvidas com as crianças, considerando suas múltiplas infâncias.
This survey of the state of the art on research in early algebra traces the evolution of a relatively new field of research and teaching practice. With its focus on the younger student, aged from about 6 years up to 12 years, this volume reveals the nature of the research that has been carried out in early algebra and how it has shaped the growth of the field. The survey, in presenting examples drawn from the steadily growing research base, highlights both the nature of algebraic thinking and the ways in which this thinking is being developed in the primary and early middle school student. Mathematical relations, patterns, and arithmetical structures lie at the heart of early algebraic activity, with processes such as noticing, conjecturing, generalizing, representing, justifying, and communicating being central to students’ engagement.
This book examines the kinds of transitions that have been studied in mathematics education research. It defines transition as a process of change, and describes learning in an educational context as a transition process. The book focuses on research in the area of mathematics education, and starts out with a literature review, describing the epistemological, cognitive, institutional and sociocultural perspectives on transition. It then looks at the research questions posed in the studies and their link with transition, and examines the theoretical approaches and methods used. It explores whether the research conducted has led to the identification of continuous processes, successive steps, or discontinuities. It answers the question of whether there are difficulties attached to the discontinuities identified, and if so, whether the research proposes means to reduce the gap – to create a transition. The book concludes with directions for future research on transitions in mathematics education.
This survey focuses on the main trends in the field of calculus education. Despite their variety, the findings reveal a cornerstone issue that is strongly linked to the formalism of calculus concepts and to the difficulties it generates in the learning and teaching process. As a complement to the main text, an extended bibliography with some of the most important references on this topic is included. Since the diversity of the research in the field makes it difficult to produce an exhaustive state-of-the-art summary, the authors discuss recent developments that go beyond this survey and put forward new research questions.
This survey book reviews four interrelated areas: (i) the relevance of heuristics in problem-solving approaches – why they are important and what research tells us about their use; (ii) the need to characterize and foster creative problem-solving approaches – what type of heuristics helps learners devise and practice creative solutions; (iii) the importance that learners formulate and pursue their own problems; and iv) the role played by the use of both multiple-purpose and ad hoc mathematical action types of technologies in problem-solving contexts – what ways of reasoning learners construct when they rely on the use of digital technologies, and how technology and technology approaches can be reconciled.
Thinking Mathematically is perfect for anyone who wants to develop their powers to think mathematically, whether at school, at university or just out of interest. This book is invaluable for anyone who wishes to promote mathematical thinking in others or for anyone who has always wondered what lies at the core of mathematics. Thinking Mathematically reveals the processes at the heart of mathematics and demonstrates how to encourage and develop them. Extremely practical, it involves the reader in questions so that subsequent discussions speak to immediate experience.
This volume discusses semiotics in mathematics education as an activity with a formal sign system, in which each sign represents something else. Theories presented by Saussure, Peirce, Vygotsky and other writers on semiotics are summarized in their relevance to the teaching and learning of mathematics. The significance of signs for mathematics education lies in their ubiquitous use in every branch of mathematics. Such use involves seeing the general in the particular, a process that is not always clear to learners. Therefore, in several traditional frameworks, semiotics has the potential to serve as a powerful conceptual lens in investigating diverse topics in mathematics education research. Topics that are implicated include (but are not limited to): the birth of signs; embodiment, gestures and artifacts; segmentation and communicative fields; cultural mediation; social semiotics; linguistic theories; chains of signification; semiotic bundles; relationships among various sign systems; intersubjectivity; diagrammatic and inferential reasoning; and semiotics as the focus of innovative learning and teaching materials.