You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Performance Optimization of Numerically Intensive Codes offers a comprehensive, tutorial-style, hands-on, introductory and intermediate-level treatment of all the essential ingredients for achieving high performance in numerical computations on modern computers. The authors explain computer architectures, data traffic and issues related to performance of serial and parallel code optimization exemplified by actual programs written for algorithms of wide interest. The unique hands-on style is achieved by extensive case studies using realistic computational problems. The performance gain obtained by applying the techniques described in this book can be very significant. The book bridges the gap...
Techniques for generating orthogonal polynomials numerically have appeared only recently, within the last 30 or so years.?Orthogonal Polynomials in MATLAB: Exercises and Solutions?describes these techniques and related applications, all supported by MATLAB programs, and presents them in a unique format of exercises and solutions designed by the author to stimulate participation. Important computational problems in the physical sciences are included as models for readers to solve their own problems.?
Provides a rapid introduction to the world of vector and parallel processing for these linear algebra applications.
This book is a guide to concepts and practice in numerical algebraic geometry ? the solution of systems of polynomial equations by numerical methods. Through numerous examples, the authors show how to apply the well-received and widely used open-source Bertini software package to compute solutions, including a detailed manual on syntax and usage options. The authors also maintain a complementary web page where readers can find supplementary materials and Bertini input files. Numerically Solving Polynomial Systems with Bertini approaches numerical algebraic geometry from a user's point of view with numerous examples of how Bertini is applicable to polynomial systems. It treats the fundamental...
Based on a course developed by the author, Introduction to High Performance Scientific Computing introduces methods for adding parallelism to numerical methods for solving differential equations. It contains exercises and programming projects that facilitate learning as well as examples and discussions based on the C programming language, with additional comments for those already familiar with C++. The text provides an overview of concepts and algorithmic techniques for modern scientific computing and is divided into six self-contained parts that can be assembled in any order to create an introductory course using available computer hardware. Part I introduces the C programming language for...
Contemporary High Performance Computing: From Petascale toward Exascale focuses on the ecosystems surrounding the world’s leading centers for high performance computing (HPC). It covers many of the important factors involved in each ecosystem: computer architectures, software, applications, facilities, and sponsors. The first part of the book examines significant trends in HPC systems, including computer architectures, applications, performance, and software. It discusses the growth from terascale to petascale computing and the influence of the TOP500 and Green500 lists. The second part of the book provides a comprehensive overview of 18 HPC ecosystems from around the world. Each chapter i...
The MATLAB® programming environment is often perceived as a platform suitable for prototyping and modeling but not for "serious" applications. One of the main complaints is that MATLAB is just too slow. Accelerating MATLAB Performance aims to correct this perception by describing multiple ways to greatly improve MATLAB program speed. Packed with thousands of helpful tips, it leaves no stone unturned, discussing every aspect of MATLAB. Ideal for novices and professionals alike, the book describes MATLAB performance in a scale and depth never before published. It takes a comprehensive approach to MATLAB performance, illustrating numerous ways to attain the desired speedup. The book covers MAT...
This most comprehensive and unrivaled compendium in the field provides an up-to-date account of the chemistry of solids, nanoparticles and hybrid materials. Following a valuable introductory chapter reviewing important synthesis techniques, the handbook presents a series of contributions by about 150 international leading experts -- the "Who's Who" of solid state science. Clearly structured, in six volumes it collates the knowledge available on solid state chemistry, starting from the synthesis, and modern methods of structure determination. Understanding and measuring the physical properties of bulk solids and the theoretical basis of modern computational treatments of solids are given ample space, as are such modern trends as nanoparticles, surface properties and heterogeneous catalysis. Emphasis is placed throughout not only on the design and structure of solids but also on practical applications of these novel materials in real chemical situations.
In scientific computing (also known as computational science), advanced computing capabilities are used to solve complex problems. This self-contained book describes and analyzes reported software failures related to the major topics within scientific computing: mathematical modeling of phenomena; numerical analysis (number representation, rounding, conditioning); mathematical aspects and complexity of algorithms, systems, or software; concurrent computing (parallelization, scheduling, synchronization); and numerical data (such as input of data and design of control logic). Readers will find lists of related, interesting bugs, MATLAB examples, and ?excursions? that provide necessary background, as well as an in-depth analysis of various aspects of the selected bugs. Illustrative examples of numerical principles such as machine numbers, rounding errors, condition numbers, and complexity are also included.
Mathematics of Computing -- Numerical Analysis.