You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is a holistic and self-contained treatment of the analysis and numerics of random differential equations from a problem-centred point of view. An interdisciplinary approach is applied by considering state-of-the-art concepts of both dynamical systems and scientific computing. The red line pervading this book is the two-fold reduction of a random partial differential equation disturbed by some external force as present in many important applications in science and engineering. First, the random partial differential equation is reduced to a set of random ordinary differential equations in the spirit of the method of lines. These are then further reduced to a family of (deterministic) ordinary differential equations. The monograph will be of benefit, not only to mathematicians, but can also be used for interdisciplinary courses in informatics and engineering.
In scientific computing (also known as computational science), advanced computing capabilities are used to solve complex problems. This self-contained book describes and analyzes reported software failures related to the major topics within scientific computing: mathematical modeling of phenomena; numerical analysis (number representation, rounding, conditioning); mathematical aspects and complexity of algorithms, systems, or software; concurrent computing (parallelization, scheduling, synchronization); and numerical data (such as input of data and design of control logic). Readers will find lists of related, interesting bugs, MATLAB examples, and ?excursions? that provide necessary background, as well as an in-depth analysis of various aspects of the selected bugs. Illustrative examples of numerical principles such as machine numbers, rounding errors, condition numbers, and complexity are also included. ?
Sparse grids are a popular tool for the numerical treatment of high-dimensional problems. Where classical numerical discretization schemes fail in more than three or four dimensions, sparse grids, in their different flavors, are frequently the method of choice. This volume of LNCSE presents selected papers from the proceedings of the fourth workshop on sparse grids and applications, and demonstrates once again the importance of this numerical discretization scheme. The articles present recent advances in the numerical analysis of sparse grids in connection with a range of applications including computational chemistry, computational fluid dynamics, and big data analytics, to name but a few.
This volume in the series Lecture Notes in Computational Science and Engineering presents a collection of papers presented at the International Workshop on FSI, held in October 2005 in Hohenwart and organized by DFG's Research Unit 493 "FSI: Modeling, Simulation, and Optimization". The papers address partitioned and monolithic coupling approaches, methodical issues and applications, and discuss FSI from the mathematical, informatics, and engineering points of view.
The present book provides an introduction to using space-filling curves (SFC) as tools in scientific computing. Special focus is laid on the representation of SFC and on resulting algorithms. For example, grammar-based techniques are introduced for traversals of Cartesian and octree-type meshes, and arithmetisation of SFC is explained to compute SFC mappings and indexings. The locality properties of SFC are discussed in detail, together with their importance for algorithms. Templates for parallelisation and cache-efficient algorithms are presented to reflect the most important applications of SFC in scientific computing. Special attention is also given to the interplay of adaptive mesh refinement and SFC, including the structured refinement of triangular and tetrahedral grids. For each topic, a short overview is given on the most important publications and recent research activities.
This book constitutes the proceedings of the 17th International Workshop on Computer Algebra in Scientific Computing, CASC 2015, held in Aachen, Germany, in September 2015. The 35 full papers presented in this volume were carefully reviewed and selected from 42 submissions. They deal with the ongoing progress both in theoretical computer algebra and its expanding applications. New and closer interactions are fostered by combining the area of computer algebra methods and systems and the application of the tools of computer algebra for the solution of problems in scientific computing.
Domain decomposition is an active, interdisciplinary research field concerned with the development, analysis, and implementation of coupling and decoupling strategies in mathematical and computational models. This volume contains selected papers presented at the 17th International Conference on Domain Decomposition Methods in Science and Engineering. It presents the newest domain decomposition techniques and examines their use in the modeling and simulation of complex problems.
For the fourth time, the Leibniz Supercomputing Centre (LRZ) and the Com- tence Network for Technical, Scienti c High Performance Computing in Bavaria (KONWIHR) publishes the results from scienti c projects conducted on the c- puter systems HLRB I and II (High Performance Computer in Bavaria). This book reports the research carried out on the HLRB systems within the last three years and compiles the proceedings of the Third Joint HLRB and KONWIHR Result and Reviewing Workshop (3rd and 4th December 2007) in Garching. In 2000, HLRB I was the rst system in Europe that was capable of performing more than one Tera op/s or one billion oating point operations per second. In 2006 it was replaced by ...
This companion piece to the author’s 2018 book, A Software Repository for Orthogonal Polynomials, focuses on Gaussian quadrature and the related Christoffel function. The book makes Gauss quadrature rules of any order easily accessible for a large variety of weight functions and for arbitrary precision. It also documents and illustrates known as well as original approximations for Gauss quadrature weights and Christoffel functions. The repository contains 60+ datasets, each dealing with a particular weight function. Included are classical, quasi-classical, and, most of all, nonclassical weight functions and associated orthogonal polynomials. Scientists, engineers, applied mathematicians, and statisticians will find the book of interest.