You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This is the first book that provides a detailed summary of one of the most successful new condensed matter theories - dynamical mean-field theory (DMFT) - in both static and dynamical cases of systems of different sizes. DMFT is one of the most successful approaches to describe the physical properties of systems with strong electron-electron correlations such as bulk materials, multi-layers, surfaces, 2D materials and nanostructures in both metallic and insulating phases. Strongly correlated materials usually include partially-filled localized d- or f-orbitals, and DMFT takes into account crucial for these systems time-resolved interaction between electrons when they “meet” on one ...
Time-dependent density-functional theory (TDDFT) is a quantum mechanical approach for the dynamical properties of electrons in matter. It's widely used in (bio)chemistry and physics to calculate molecular excitation energies and optical properties of materials. This is the first graduate-level text on the formal framework and applications of TDDFT.
This book gathers papers presented at Mechatronics 2019, an international conference held in Warsaw, Poland, from September 16 to 18, 2019. The contributions discuss the numerous, multidisciplinary technological advances in the field of applied mechatronics that the emerging Industry 4.0 has already yielded. Each chapter presents a particular example of interdisciplinary theoretical knowledge, numerical modelling and simulation, or the application of artificial intelligence techniques. Further, the papers show how both software and physical devices can be incorporated into mechatronic systems to increase production efficiency and resource savings. The results and guidelines presented here will benefit both scientists and engineers looking for solutions to specific industrial and research problems.
Russia’s illegal annexation of Crimea in 2014 and the ongoing war in eastern Ukraine have brought scholarly and public attention to Ukraine’s borders. Making Ukraine aims to investigate the various processes of negotiation, delineation, and contestation that have shaped the country’s borders throughout the past century. Essays by contributors from various historical fields consider how, when, and under what conditions the borders that historically define the country were agreed upon. A diverse set of national and transnational contexts are explored, with a primary focus on the critical period between 1917 and 1954. Chapters are organized around three main themes: the interstate treatie...
"This book neither researches structural integration, nor starts from ethnically defined categories. At the basis are two clearly distinguishable migration streams entering Belgium in the aftermath of World War II. First, there were about 350 soldiers from Poland who served with the Allies, had met Flemish young women during their liberation march through Flanders, married their financ?es in 1945 and 1946 and settled in their wives' hometowns and villages. And second, there were the Ostarbeiterinnen-- Soviet young women of Ukrainian, Russian, or Belarusian decent, who after the German invasion of the Soviet Union on 22 June 1941, were deported to Nazi Germany to do forced labor. While at wor...
Developments in the connected fields of solid state physics, bioengineering, mechatronics and nanometrology have had a profound effect on the emergence of modern technologies and their influence on our lives. In all of these fields, understanding and improving the basic underlying materials is of crucial importance for the development of systems and applications. The International Conference Inter-Academia 2016 has successfully married these fields and become a regular feature in the conference calendar. It consisted of seven thematic areas in the field of material science, nanotechnology, biotechnology, plasma physics, metrology, robotics, sensors and devices. The book Recent Global Researc...
Self-contained treatment of nonrelativistic many-particle systems discusses both formalism and applications in terms of ground-state (zero-temperature) formalism, finite-temperature formalism, canonical transformations, and applications to physical systems. 1971 edition.
This book fills a gap between many of the basic solid state physics and materials sciencebooks that are currently available. It is written for a mixed audience of electricalengineering and applied physics students who have some knowledge of elementaryundergraduate quantum mechanics and statistical mechanics. This book, based on asuccessful course taught at MIT, is divided pedagogically into three parts: (I) ElectronicStructure, (II) Transport Properties, and (III) Optical Properties. Each topic is explainedin the context of bulk materials and then extended to low-dimensional materials whereapplicable. Problem sets review the content of each chapter to help students to understandthe material described in each of the chapters more deeply and to prepare them to masterthe next chapters.
This textbook presents the basic elements needed to understand and engage in research in semiconductor physics. It deals with elementary excitations in bulk and low-dimensional semiconductors, including quantum wells, quantum wires and quantum dots. The basic principles underlying optical nonlinearities are developed, including excitonic and many-body plasma effects. The fundamentals of optical bistability, semiconductor lasers, femtosecond excitation, optical Stark effect, semiconductor photon echo, magneto-optic effects, as well as bulk and quantum-confined Franz-Keldysh effects are covered. The material is presented in sufficient detail for graduate students and researchers who have a general background in quantum mechanics.