You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains 27 contributions to the Second Russian-German Advanced Research Workshop on Computational Science and High Performance Computing presented in March 2005 at Stuttgart, Germany. Contributions range from computer science, mathematics and high performance computing to applications in mechanical and aerospace engineering.
This volume collects contributions to the 14th Symposium of the STAB (German Aerospace Aerodynamics Association). The association involves German scientists and engineers from universities, research establishments and industry who are doing research and project work in numerical and experimental fluid mechanics and aerodynamics, mainly for aerospace but for other applications, too. The volume gives a broad overview of ongoing work in Germany in this field.
Preface “In aircraft design, efficiency is determined by the ability to accurately and rel- bly predict the occurrence of, and to model the development of, turbulent flows. Hence, the main objective in industrial computational fluid dynamics (CFD) is to increase the capabilities for an improved predictive accuracy for both complex flows and complex geometries”. This text part taken from Haase et al (2006), - scribing the results of the DESider predecessor project “FLOMANIA” is still - and will be in future valid. With an ever-increasing demand for faster, more reliable and cleaner aircraft, flight envelopes are necessarily shifted into areas of the flow regimes exhibiting highly unst...
Contains 20 papers presented at the Sixth International Nobeyama Workshop on the New Century of Computational Fluid Dynamics, Nobeyama, Japan, April 21-24, 2003. These papers cover computational electromagnetics, astrophysical topics, CFD research and applications in general, large-eddy simulation, mesh generation topics, visualization, and more.
This book is the closing report of the national priority program Nature-Inspired Fluid Mechanics (Schwerpunktprogramm SPP 1207: Strömungsbeeinflussung in der Natur und Technik). Nature-inspired fluid mechanics is one subset of biomimetics, a discipline which has received increased attention over the last decade, with numerous faculties and degree courses devoted solely to exploring ‘nature as a model’ for engineering applications. To save locomotion energy, evolution has optimized the design of animals such that friction loss is minimized. In addition to many morphological adaptations, animals that are often exposed to water or air currents have developed special behaviors that allow th...
This volume contains the contributions to the 10th International Workshop on Railway Noise, held October 18–22, 2010, in Nagahama, Japan, organized by the Railway Technical Research Institute (RTRI), Japan. With 11 sessions and 3 poster sessions, the workshop featured presentations by international leaders in the field of railway noise and vibration. All subjects relating to 1. prospects, legal regulation, and perception; 2. wheel and rail noise; 3. structure-borne noise and squeal noise; 4. ground-borne vibration; 5. aerodynamic noise and micro-pressure waves from tunnel portals; 6. interior noise and sound barriers; and 7. prediction, measurements, and monitoring are addressed here. This book is a useful “state-of-the-art” reference for scientists and engineers involved in solving environmental problems of railways.
This volume contains results of the German CFD initiative MEGADESIGN which combines CFD development activities from DLR, universities and aircraft industry. Based on the DLR flow solvers FLOWer and TAU the main objectives of the four-years project is to ensure the prediction accuracy with a guaranteed error bandwidth for certain aircraft configurations at design conditions, to reduce the simulation turn-around time for large-scale applications significantly, to improve the reliability of the flow solvers for full aircraft configurations in the complete flight regime, to extend the flow solvers to allow for multidisciplinary simulations and to establish numerical shape optimization as a vital tool within the aircraft design process. This volume highlights recent improvements and enhancements of the flow solvers as well as new developments with respect to aerodynamic and multidisciplinary shape optimization. Improved numerical simulation capabilities are demonstrated by several industrial applications.
This volume contains 27 contributions to the Forth Russian-German Advanced Research Workshop on Computational Science and High Performance Computing presented in October 2009 in Freiburg, Germany. The workshop was organized jointly by the High Performance Computing Center Stuttgart (HLRS), the Institute of Computational Technologies of the Siberian Branch of the Russian Academy of Sciences (ICT SB RAS) and the Section of Applied Mathematics of the University of Freiburg (IAM Freiburg) The contributions range from computer science, mathematics and high performance computing to applications in mechanical and aerospace engineering. They show a wealth of theoretical work and simulation experience with a potential of bringing together theoretical mathematical modelling and usage of high performance computing systems presenting the state of the art of computational technologies.
This book reports on the latest numerical and experimental findings in the field of high-lift technologies. It covers interdisciplinary research subjects relating to scientific computing, aerodynamics, aeroacoustics, material sciences, aircraft structures, and flight mechanics. The respective chapters are based on papers presented at the Final Symposium of the Collaborative Research Center (CRC) 880, which was held on December 17-18, 2019 in Braunschweig, Germany. The conference and the research presented here were partly supported by the CRC 880 on “Fundamentals of High Lift for Future Civil Aircraft,” funded by the DFG (German Research Foundation). The papers offer timely insights into high-lift technologies for short take-off and landing aircraft, with a special focus on aeroacoustics, efficient high-lift, flight dynamics, and aircraft design.
This volume contains contributions to the Russian-German Advanced Research Workshop on Computational Science and High Performance Computing as presented in September 2003 at Novosibirsk (Academgorodok), Russia. The workshop was organized jointly by the German High Performance Computing Center Stuttgart (HLRS) and the Russian Institute for Computational Technologies (ICT SB RAS). The contributions range from computer science, mathematics and high performance computing to applications in mechanical and aerospace engineering. They bring together a wealth of theoretical work and simulation experience and thus show the potential of bringing together theoretical mathematical modelling with the usage of powerful high performance computing systems and present the state of the art of computational technologies.