Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Semi-Supervised Learning
  • Language: en
  • Pages: 525

Semi-Supervised Learning

  • Type: Book
  • -
  • Published: 2010-01-22
  • -
  • Publisher: MIT Press

A comprehensive review of an area of machine learning that deals with the use of unlabeled data in classification problems: state-of-the-art algorithms, a taxonomy of the field, applications, benchmark experiments, and directions for future research. In the field of machine learning, semi-supervised learning (SSL) occupies the middle ground, between supervised learning (in which all training examples are labeled) and unsupervised learning (in which no label data are given). Interest in SSL has increased in recent years, particularly because of application domains in which unlabeled data are plentiful, such as images, text, and bioinformatics. This first comprehensive overview of SSL presents...

Introduction to Semi-Supervised Learning
  • Language: en
  • Pages: 116

Introduction to Semi-Supervised Learning

Semi-supervised learning is a learning paradigm concerned with the study of how computers and natural systems such as humans learn in the presence of both labeled and unlabeled data. Traditionally, learning has been studied either in the unsupervised paradigm (e.g., clustering, outlier detection) where all the data are unlabeled, or in the supervised paradigm (e.g., classification, regression) where all the data are labeled. The goal of semi-supervised learning is to understand how combining labeled and unlabeled data may change the learning behavior, and design algorithms that take advantage of such a combination. Semi-supervised learning is of great interest in machine learning and data mi...

Kernel Methods in Computational Biology
  • Language: en
  • Pages: 428

Kernel Methods in Computational Biology

  • Type: Book
  • -
  • Published: 2004
  • -
  • Publisher: MIT Press

A detailed overview of current research in kernel methods and their application to computational biology.

Advances in Neural Information Processing Systems 16
  • Language: en
  • Pages: 1694

Advances in Neural Information Processing Systems 16

  • Type: Book
  • -
  • Published: 2004
  • -
  • Publisher: MIT Press

Papers presented at the 2003 Neural Information Processing Conference by leading physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The annual Neural Information Processing (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees -- physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only thirty percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains all the papers presented at the 2003 conference.

Handbook of Research on Web Log Analysis
  • Language: en
  • Pages: 627

Handbook of Research on Web Log Analysis

  • Type: Book
  • -
  • Published: 2008-10-31
  • -
  • Publisher: IGI Global

"This book reflects on the multifaceted themes of Web use and presents various approaches to log analysis"--Provided by publisher.

Machine Learning and Knowledge Discovery in Databases
  • Language: en
  • Pages: 787

Machine Learning and Knowledge Discovery in Databases

  • Type: Book
  • -
  • Published: 2009-08-27
  • -
  • Publisher: Springer

This book constitutes the refereed proceedings of the joint conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2009, held in Bled, Slovenia, in September 2009. The 106 papers presented in two volumes, together with 5 invited talks, were carefully reviewed and selected from 422 paper submissions. In addition to the regular papers the volume contains 14 abstracts of papers appearing in full version in the Machine Learning Journal and the Knowledge Discovery and Databases Journal of Springer. The conference intends to provide an international forum for the discussion of the latest high quality research results in all areas related to machine learning and knowledge discovery in databases. The topics addressed are application of machine learning and data mining methods to real-world problems, particularly exploratory research that describes novel learning and mining tasks and applications requiring non-standard techniques.

Bioinformatics
  • Language: en
  • Pages: 302

Bioinformatics

"There are fundamental principles for problem analysis and algorithm design that are continuously used in bioinformatics. This book concentrates on a clear presentation of these principles, presenting them in a self-contained, mathematically clear and precise manner, and illustrating them with lots of case studies from main fields of bioinformatics. Emphasis is laid on algorithmic "pearls" of bioinformatics, showing that things may get rather simple when taking a proper view into them. The book closes with a thorough bibliography, ranging from classic research results to very recent findings, providing many pointers for future research. Overall, this volume is ideally suited for a senior undergraduate or graduate course on bioinformatics, with a strong focus on its mathematical and computer science background."--BOOK JACKET.

Mining Text Data
  • Language: en
  • Pages: 527

Mining Text Data

Text mining applications have experienced tremendous advances because of web 2.0 and social networking applications. Recent advances in hardware and software technology have lead to a number of unique scenarios where text mining algorithms are learned. Mining Text Data introduces an important niche in the text analytics field, and is an edited volume contributed by leading international researchers and practitioners focused on social networks & data mining. This book contains a wide swath in topics across social networks & data mining. Each chapter contains a comprehensive survey including the key research content on the topic, and the future directions of research in the field. There is a s...

Foundations of Data Science
  • Language: en
  • Pages: 433

Foundations of Data Science

Covers mathematical and algorithmic foundations of data science: machine learning, high-dimensional geometry, and analysis of large networks.

Pattern Recognition
  • Language: en
  • Pages: 596

Pattern Recognition

This book constitutes the refereed proceedings of the 26th Symposium of the German Association for Pattern Recognition, DAGM 2004, held in Tübingen, Germany in August/September 2004. The 22 revised papers and 48 revised poster papers presented were carefully reviewed and selected from 146 submissions. The papers are organized in topical sections on learning, Bayesian approaches, vision and faces, vision and motion, biologically motivated approaches, segmentation, object recognition, and object recognition and synthesis.