You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book discusses the extremophiles explored for biosynthesis of nanoparticles. Nanotechnology is a widely emerging field involving interdisciplinary subjects such as biology, physics, chemistry and medicine. A wide variety of microorganisms, such as bacteria, fungi and algae are employed as biological agents for the synthesis of nanoparticles. Novel routes by which extremophiles can be employed to generate nanoparticles have yet to be discovered. The book is divided into 5 major chapters: (1) Major types of nanoparticles in nanotechnology (2) Diversity of microbes in the synthesis of nanoparticles (3) Extremophiles in nanoparticle biosynthesis (4) Applications of nanoparticles produced by extremophiles (5) Challenges and Future perspectives
"In our solar system, seven out of nine planets, including Earth, are considered to be cold. Even though cold temperatures are lethal to many microorganisms, some successfully colonize cold habitats. I studied the distribution, abundance and diversity of two cold-adapted genera, Exiguobacterium and Psychrobacter. Total microbial community DNA extracted from 54 sediment and soil samples from Siberia, Antarctica, Michigan, Iowa, Brazil, Puerto Rico and Hawaii was analyzed with specific primer sets for each genus by quantitative real-time PCR and by 16S rRNA gene clone libraries. Both genera were more commonly found and have higher densities in polar regions, but they were also detected in some...
None
This book provides a comprehensive overview of the potential use of graphene-based materials in two important societal areas: medicine and the environment. It discusses how new graphene-based materials can be creatively used for biological purposes, for example as delivery vehicles for diagnostics or therapeutics, ultrasensitive sensors, smart responsive substrates for artificial-tissue design and biomarkers. Moreover, it presents new insights into their use as sorbent or photocatalytic materials for environmental decontamination in water and gas-phase desalination membranes and as sensors for contaminant monitoring, giving relevance to the current discussions on the possible toxicological effects of graphene-based materials.
Environmental engineers support the well-being of people and the planet in areas where the two intersect. Over the decades the field has improved countless lives through innovative systems for delivering water, treating waste, and preventing and remediating pollution in air, water, and soil. These achievements are a testament to the multidisciplinary, pragmatic, systems-oriented approach that characterizes environmental engineering. Environmental Engineering for the 21st Century: Addressing Grand Challenges outlines the crucial role for environmental engineers in this period of dramatic growth and change. The report identifies five pressing challenges of the 21st century that environmental engineers are uniquely poised to help advance: sustainably supply food, water, and energy; curb climate change and adapt to its impacts; design a future without pollution and waste; create efficient, healthy, resilient cities; and foster informed decisions and actions.
Provides an accessible and relatable approach for understanding how much energy we use in our day-to-day lives Daily Energy Use and Carbon Emissions enables readers to directly evaluate their energy use, estimate the resulting carbon emissions, and use the information to better appreciate and address the impact their activities have on climate change. Using quantities and terms rooted in everyday life, this easy-to-understand textbook helps readers determine the energy they consume driving a car, preparing a meal, charging electronic devices, heating and cooling a house or apartment, and more. Throughout the text, clear explanations, accurate information, and numerous real-world examples hel...
Ice is one of the most abundant and environmentally important materials on Earth, and its unique and intriguing physical properties present fascinating areas of study for a wide variety of researchers. This book is about the physics of ice, by which is meant the properties of the material itself and the ways in which these properties are interpreted in terms of water molecules and crystalline structure. Although ice has a simple crystal structure its hydrogen bonding results in unique properties, which continue to be the subject of active research. In this book the physical principles underlying the properties of ice are carefully developed at a level aimed at pure and applied researchers in the field. Important topics like current understandings of the electrical, mechanical, and surface properties, and the occurrence of many different crystalline phases are developed in a coherent way for the first time. An extensive reference list and numerous illustrations add to the usefulness and readability of the text.
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product. The classic environmental biotechnology textbook—fully updated for the latest advances This thoroughly revised educational resource presents the biological principles that underlie modern microbiological treatment technologies. Written by two of the field’s foremost researchers, Environmental Biotechnology: Principles and Applications, Second Edition, clearly explains the new technologies that have evolved over the past 20 years, including direct anaerobic treatments, membrane-based processes, and gran...