Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Federated Learning
  • Language: en
  • Pages: 291

Federated Learning

This book provides a comprehensive and self-contained introduction to federated learning, ranging from the basic knowledge and theories to various key applications. Privacy and incentive issues are the focus of this book. It is timely as federated learning is becoming popular after the release of the General Data Protection Regulation (GDPR). Since federated learning aims to enable a machine model to be collaboratively trained without each party exposing private data to others. This setting adheres to regulatory requirements of data privacy protection such as GDPR. This book contains three main parts. Firstly, it introduces different privacy-preserving methods for protecting a federated lear...

Advances and Open Problems in Federated Learning
  • Language: en
  • Pages: 226

Advances and Open Problems in Federated Learning

  • Type: Book
  • -
  • Published: 2021-06-23
  • -
  • Publisher: Unknown

The term Federated Learning was coined as recently as 2016 to describe a machine learning setting where multiple entities collaborate in solving a machine learning problem, under the coordination of a central server or service provider. Each client's raw data is stored locally and not exchanged or transferred; instead, focused updates intended for immediate aggregation are used to achieve the learning objective.Since then, the topic has gathered much interest across many different disciplines and the realization that solving many of these interdisciplinary problems likely requires not just machine learning but techniques from distributed optimization, cryptography, security, differential pri...

Federated Learning Systems
  • Language: en
  • Pages: 207

Federated Learning Systems

This book covers the research area from multiple viewpoints including bibliometric analysis, reviews, empirical analysis, platforms, and future applications. The centralized training of deep learning and machine learning models not only incurs a high communication cost of data transfer into the cloud systems but also raises the privacy protection concerns of data providers. This book aims at targeting researchers and practitioners to delve deep into core issues in federated learning research to transform next-generation artificial intelligence applications. Federated learning enables the distribution of the learning models across the devices and systems which perform initial training and report the updated model attributes to the centralized cloud servers for secure and privacy-preserving attribute aggregation and global model development. Federated learning benefits in terms of privacy, communication efficiency, data security, and contributors’ control of their critical data.

Learning Theory
  • Language: en
  • Pages: 657

Learning Theory

This book constitutes the refereed proceedings of the 17th Annual Conference on Learning Theory, COLT 2004, held in Banff, Canada in July 2004. The 46 revised full papers presented were carefully reviewed and selected from a total of 113 submissions. The papers are organized in topical sections on economics and game theory, online learning, inductive inference, probabilistic models, Boolean function learning, empirical processes, MDL, generalisation, clustering and distributed learning, boosting, kernels and probabilities, kernels and kernel matrices, and open problems.

Federated Learning
  • Language: en
  • Pages: 436

Federated Learning

  • Type: Book
  • -
  • Published: 2024-02-09
  • -
  • Publisher: Elsevier

Federated Learning: Theory and Practi ce provides a holisti c treatment to federated learning as a distributed learning system with various forms of decentralized data and features. Part I of the book begins with a broad overview of opti mizati on fundamentals and modeling challenges, covering various aspects of communicati on effi ciency, theoretical convergence, and security. Part II featuresemerging challenges stemming from many socially driven concerns of federated learning as a future public machine learning service. Part III concludes the book with a wide array of industrial applicati ons of federated learning, as well as ethical considerations, showcasing its immense potential for dri...

Engineering Mathematics and Artificial Intelligence
  • Language: en
  • Pages: 530

Engineering Mathematics and Artificial Intelligence

  • Type: Book
  • -
  • Published: 2023-07-26
  • -
  • Publisher: CRC Press

The fields of Artificial Intelligence (AI) and Machine Learning (ML) have grown dramatically in recent years, with an increasingly impressive spectrum of successful applications. This book represents a key reference for anybody interested in the intersection between mathematics and AI/ML and provides an overview of the current research streams. Engineering Mathematics and Artificial Intelligence: Foundations, Methods, and Applications discusses the theory behind ML and shows how mathematics can be used in AI. The book illustrates how to improve existing algorithms by using advanced mathematics and offers cutting-edge AI technologies. The book goes on to discuss how ML can support mathematical modeling and how to simulate data by using artificial neural networks. Future integration between ML and complex mathematical techniques is also highlighted within the book. This book is written for researchers, practitioners, engineers, and AI consultants.

Metaverse Communication and Computing Networks
  • Language: en
  • Pages: 356

Metaverse Communication and Computing Networks

Metaverse Communication and Computing Networks Understand the future of the Internet with this wide-ranging analysis “Metaverse” is the term for applications that allow users to assume digital avatars to interact with other humans and software functions in a three-dimensional virtual space. These applications and the spaces they create constitute an exciting and challenging new frontier in digital communication. Surmounting the technological and conceptual barriers to creating the Metaverse will require researchers and engineers familiar with its underlying theories and a wide range of technologies and techniques. Metaverse Communication and Computing Networks provides a comprehensive tr...

Machine Learning on Commodity Tiny Devices
  • Language: en
  • Pages: 268

Machine Learning on Commodity Tiny Devices

  • Type: Book
  • -
  • Published: 2022-12-13
  • -
  • Publisher: CRC Press

This book aims at the tiny machine learning (TinyML) software and hardware synergy for edge intelligence applications. This book presents on-device learning techniques covering model-level neural network design, algorithm-level training optimization and hardware-level instruction acceleration. Analyzing the limitations of conventional in-cloud computing would reveal that on-device learning is a promising research direction to meet the requirements of edge intelligence applications. As to the cutting-edge research of TinyML, implementing a high-efficiency learning framework and enabling system-level acceleration is one of the most fundamental issues. This book presents a comprehensive discuss...

AI, Machine Learning and Deep Learning
  • Language: en
  • Pages: 347

AI, Machine Learning and Deep Learning

  • Type: Book
  • -
  • Published: 2023-06-05
  • -
  • Publisher: CRC Press

Today, Artificial Intelligence (AI) and Machine Learning/ Deep Learning (ML/DL) have become the hottest areas in information technology. In our society, many intelligent devices rely on AI/ML/DL algorithms/tools for smart operations. Although AI/ML/DL algorithms and tools have been used in many internet applications and electronic devices, they are also vulnerable to various attacks and threats. AI parameters may be distorted by the internal attacker; the DL input samples may be polluted by adversaries; the ML model may be misled by changing the classification boundary, among many other attacks and threats. Such attacks can make AI products dangerous to use. While this discussion focuses on ...

Backdoor Attacks against Learning-Based Algorithms
  • Language: en
  • Pages: 161

Backdoor Attacks against Learning-Based Algorithms

None