You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Convexity of sets in linear spaces, and concavity and convexity of functions, lie at the root of beautiful theoretical results that are at the same time extremely useful in the analysis and solution of optimization problems, including problems of either single objective or multiple objectives. Not all of these results rely necessarily on convexity and concavity; some of the results can guarantee that each local optimum is also a global optimum, giving these methods broader application to a wider class of problems. Hence, the focus of the first part of the book is concerned with several types of generalized convex sets and generalized concave functions. In addition to their applicability to n...
This book examines relationships between pairwise comparisons matrices. It first provides an overview of the latest theories of pairwise comparisons in decision making, discussing the pairwise comparison matrix, a fundamental tool for further investigation, as a deterministic matrix with given elements. Subsequent chapters then investigate these matrices under uncertainty, as a matrix with vague elements (fuzzy and/or intuitionistic fuzzy ones), and also as random elements. The second part of the book describes the application of the theoretical results in the three most popular multicriteria decision-making methods: the Analytic Hierarchy Process (AHP), PROMETHEE and TOPSIS. This book appeals to scholars in areas such as decision theory, operations research, optimization theory, algebra, interval analysis and fuzzy sets.
Selected Papers of the International Symposium held at Bechyne, June 25-29, 1990
Linear programming has attracted the interest of mathematicians since World War II when the first computers were constructed. Early attempts to apply linear programming methods practical problems failed, in part because of the inexactness of the data used to create the models. This book presents a comprehensive treatment of linear optimization with inexact data, summarizing existing results and presenting new ones within a unifying framework.
Optimization is of central concern to a number of discip lines. Operations Research and Decision Theory are often consi dered to be identical with optimizationo But also in other areas such as engineering design, regional policy, logistics and many others, the search for optimal solutions is one of the prime goals. The methods and models which have been used over the last decades in these areas have primarily been "hard" or "crisp", i. e. the solutions were considered to be either fea sible or unfeasible, either above a certain aspiration level or below. This dichotomous structure of methods very often forced the modeller to approximate real problem situations of the more-or-less type by yes...
Do Smart Adaptive Systems Exist? is intended as a reference and a guide summarising and focusing on best practices when using intelligent techniques and building systems requiring a degree of adaptation and intelligence. It is therefore not intended as a collection of the most recent research results, but as a practical guide for experts from other areas and industrial users interested in building solutions to their problems using intelligent techniques. One of the main issues covered is an attempt to answer the question of how to select and/or combine suitable intelligent techniques from a large pool of potential solutions. Another attractive feature of the book is that it brings together experts from neural network, fuzzy, machine learning, evolutionary and hybrid systems communities who will provide their views on how these different intelligent technologies have contributed and will contribute to creation of smart adaptive systems of the future.
This volume contains a selection of 128 papers presented in lectures during the international scientific symposium "Operations Research 2005" (OR 2005) held at the University of Bremen, September 7-9, 2005. This international conference took place under the auspices of the German Operations Research Society (GOR). The symposium had about 600 participants from countries all over the world. It attracted academics and practitioners working in various fields of Operations Research and provided them with the most recent advances in Operations Research as well as related areas in Economics, Mathematics, and Computer Science including the special interest streams Logistics and New Maritime Businesses. The program consisted of 3 plenary and 15 semi-plenary talks and about 400 contributed presentations selected by the program committee to be presented in 20 sections.
This book constitutes the refereed proceedings of the 6th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, IUKM 2018, held in Hanoi, Vietnam, in March 2018.The 39 revised full papers presented in this book were carefully reviewed and selected from 76 initial submissions. The papers are organized in topical sections on uncertainty management and decision support; clustering and classification; machine learning applications; statistical methods; and econometric applications.
These two volumes constitute the proceedings of the 10th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, IUKM 2023, held in Kanazawa, Japan, during November 2-4, 2023. The 58 full papers presented were carefully reviewed and selected from 107 submissions. The papers deal with all aspects of research results, ideas, and experiences of application among researchers and practitioners involved with all aspects of uncertainty modelling and management.
This book constitutes the refereed proceedings of the 7th International Symposium on Integrated Uncertainty in Knowledge Modelling and Decision Making, IUKM 2019, held in Nara, Japan, in March 2019. The 37 revised full papers presented were carefully reviewed and selected from 93 submissions. The papers deal with all aspects of uncertainty modelling and management and are organized in topical sections on uncertainty management and decision support; econometrics; machine learning; machine learning applications; and statistical methods.