You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Since the discovery of the Indus Civilization, the meaning of the enigmatic Indus script remains hidden in its four hundred characters. While many would-be-decipherers have attempted to unravel its meaning with the aid of a presumed underlying language, none of these attempts has proven successful. In response, the approach taken in this work does not preclude an underlying language, but offers an alternate approach where the positional patterns of the Indus signs are investigated in an attempt to segment the character strings. Michael Korvink is a former instructor of International Studies at The University of North Carolina at Charlotte, and now works in the private sector.
None
None
"Education, arts and social sciences, natural and technical sciences in the United States and Canada".
Inkjet-based Micromanufacturing Inkjet technology goes way beyond putting ink on paper: it enables simpler, faster and more reliable manufacturing processes in the fields of micro- and nanotechnology. Modern inkjet heads are per se precision instruments that deposit droplets of fluids on a variety of surfaces in programmable, repeating patterns, allowing, after suitable modifications and adaptations, the manufacturing of devices such as thin-film transistors, polymer-based displays and photovoltaic elements. Moreover, inkjet technology facilitates the large-scale production of flexible RFID transponders needed, eg, for automated logistics and miniaturized sensors for applications in health s...
Design Automation Methods and Tools for Microfluidics-Based Biochips deals with all aspects of design automation for microfluidics-based biochips. Experts have contributed chapters on many aspects of biochip design automation. Topics covered include: device modeling; adaptation of bioassays for on-chip implementations; numerical methods and simulation tools; architectural synthesis, scheduling and binding of assay operations; physical design and module placement; fault modeling and testing; and reconfiguration methods.
In the past decades, model reduction has become an ubiquitous tool in analysis and simulation of dynamical systems, control design, circuit simulation, structural dynamics, CFD, and many other disciplines dealing with complex physical models. The aim of this book is to survey some of the most successful model reduction methods in tutorial style articles and to present benchmark problems from several application areas for testing and comparing existing and new algorithms. As the discussed methods have often been developed in parallel in disconnected application areas, the intention of the mini-workshop in Oberwolfach and its proceedings is to make these ideas available to researchers and practitioners from all these different disciplines.
Covering technological aspects as well as the suitability and applicability of various kinds of uses, this handbook shows optimization strategies, techniques and assembly pathways to achieve the combination of complex, even three-dimensional structures with simple manufacturing steps. The authors provide information on markets, commercialization opportunities and aspects of mass or large-scale production as well as design tools, experimental techniques, novel materials, and ideas for future improvements. Not only do they weigh up cost versus quantity, they also consider CMOS and LIGA strategies. Of interest to physicists, electronics engineers, materials scientists, institutional and industrial libraries as well as graduate students of the relevant disciplines.