You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Pictures are a medium that helps make the past tangible and preserve memories. Without context, they are not able to do so. Pictures are brought to life by their associated stories. However, the older pictures become, the fewer contemporary witnesses can tell these stories. Especially for large, analog picture archives, knowledge and memories are spread over many people. This creates several challenges: First, the pictures must be digitized to save them from decaying and make them available to the public. Since a simple listing of all the pictures is confusing, the pictures should be structured accessibly. Second, known information that makes the stories vivid needs to be added to the pictur...
Like conventional software projects, projects in model-driven software engineering require adequate management of multiple versions of development artifacts, importantly allowing living with temporary inconsistencies. In the case of model-driven software engineering, employed versioning approaches also have to handle situations where different artifacts, that is, different models, are linked via automatic model transformations. In this report, we propose a technique for jointly handling the transformation of multiple versions of a source model into corresponding versions of a target model, which enables the use of a more compact representation that may afford improved execution time of both the transformation and further analysis operations. Our approach is based on the well-known formalism of triple graph grammars and a previously introduced encoding of model version histories called multi-version models. In addition to showing the correctness of our approach with respect to the standard semantics of triple graph grammars, we conduct an empirical evaluation that demonstrates the potential benefit regarding execution time performance.
Complex projects developed under the model-driven engineering paradigm nowadays often involve several interrelated models, which are automatically processed via a multitude of model operations. Modular and incremental construction and execution of such networks of models and model operations are required to accommodate efficient development with potentially large-scale models. The underlying problem is also called Global Model Management. In this report, we propose an approach to modular and incremental Global Model Management via an extension to the existing technique of Generalized Discrimination Networks (GDNs). In addition to further generalizing the notion of query operations employed i...
The “HPI Future SOC Lab” is a cooperation of the Hasso Plattner Institute (HPI) and industry partners. Its mission is to enable and promote exchange and interaction between the research community and the industry partners. The HPI Future SOC Lab provides researchers with free of charge access to a complete infrastructure of state of the art hard and software. This infrastructure includes components, which might be too expensive for an ordinary research environment, such as servers with up to 64 cores and 2 TB main memory. The offerings address researchers particularly from but not limited to the areas of computer science and business information systems. Main areas of research include cloud computing, parallelization, and In-Memory technologies. This technical report presents results of research projects executed in 2018. Selected projects have presented their results on April 17th and November 14th 2017 at the Future SOC Lab Day events.
Decubitus is one of the most relevant diseases in nursing and the most expensive to treat. It is caused by sustained pressure on tissue, so it particularly affects bed-bound patients. This work lays a foundation for pressure mattress-based decubitus prophylaxis by implementing a solution to the single-frame 2D Human Pose Estimation problem. For this, methods of Deep Learning are employed. Two approaches are examined, a coarse-to-fine Convolutional Neural Network for direct regression of joint coordinates and a U-Net for the derivation of probability distribution heatmaps. We conclude that training our models on a combined dataset of the publicly available Bodies at Rest and SLP data yields t...
Anlässlich des 10-jährigen Jubiläums von openHPI informiert dieser technische Bericht über die HPI-MOOC-Plattform einschließlich ihrer Kernfunktionen, Technologie und Architektur. In einer Einleitung wird die Plattformfamilie mit allen Partnerplattformen vorgestellt; diese belaufen sich inklusive openHPI aktuell auf neun Plattformen. In diesem Abschnitt wird außerdem gezeigt, wie openHPI als Berater und Forschungspartner in verschiedenen Projekten fungiert. Im zweiten Kapitel werden die Funktionalitäten und gängigen Kursformate der Plattform präsentiert. Die Funktionalitäten sind in Lerner- und Admin-Funktionen unterteilt. Der Bereich Lernerfunktionen bietet detaillierte Informatio...
Digitale Technologien bieten erhebliche politische, wirtschaftliche und gesellschaftliche Chancen. Zugleich ist der Begriff digitale Souveränität zu einem Leitmotiv im deutschen Diskurs über digitale Technologien geworden: das heißt, die Fähigkeit des Staates, seine Verantwortung wahrzunehmen und die Befähigung der Gesellschaft – und des Einzelnen – sicherzustellen, die digitale Transformation selbstbestimmt zu gestalten. Exemplarisch für die Herausforderung in Deutschland und Europa, die Vorteile digitaler Technologien zu nutzen und gleichzeitig Souveränitätsbedenken zu berücksichtigen, steht der Bildungssektor. Er umfasst Bildung als zentrales öffentliches Gut, ein schnell a...
The RailChain project designed, implemented, and experimentally evaluated a juridical recorder that is based on a distributed consensus protocol. That juridical blockchain recorder has been realized as distributed ledger on board the advanced TrainLab (ICE-TD 605 017) of Deutsche Bahn. For the project, a consortium consisting of DB Systel, Siemens, Siemens Mobility, the Hasso Plattner Institute for Digital Engineering, Technische Universität Braunschweig, TÜV Rheinland InterTraffic, and Spherity has been formed. These partners not only concentrated competencies in railway operation, computer science, regulation, and approval, but also combined experiences from industry, research from acade...
Abscisic Acid in Plants, Volume 92, the latest release in the Advances in Botanical Research series, is a compilation of the current state-of-the-art on the topic. Chapters in this new release comprehensively describe latest knowledge on how ABA functions as a plant hormone. They cover topics related to molecular mechanisms as well as the biochemical and chemical aspects of ABA action: hormone biosynthesis, catabolism, transport, perception, signaling in plants, seeds and in response to biotic and abiotic stresses, hormone evolution and chemical biology, and much more. - Presents the latest release in the Advances in Botanical Research series - Provides an Ideal resource for post-graduates and researchers in the plant sciences, including plant physiology, plant genetics, plant biochemistry, plant pathology, and plant evolution - Contains contributions from internationally recognized authorities in their respective fields
Papers presented at NIPS, the flagship meeting on neural computation, held in December 2004 in Vancouver.The annual Neural Information Processing Systems (NIPS) conference is the flagship meeting on neural computation. It draws a diverse group of attendees--physicists, neuroscientists, mathematicians, statisticians, and computer scientists. The presentations are interdisciplinary, with contributions in algorithms, learning theory, cognitive science, neuroscience, brain imaging, vision, speech and signal processing, reinforcement learning and control, emerging technologies, and applications. Only twenty-five percent of the papers submitted are accepted for presentation at NIPS, so the quality is exceptionally high. This volume contains the papers presented at the December, 2004 conference, held in Vancouver.